
  

Tclrad

Rapid Application Development System
a proposal to the Tcl community



  

Born in Metodo, Modena

● Company
● 20 employers (programmers, helpdesk, ...)
● IT company in a holding of 650 employers
● 1200 linux desktops (including customers)
● 360 linux servers (including customers)
● 6900 tcl modules, 1.410.000 lines of tcl code
● Custom Linux distribution (itux, a fedora/centos 

spin)
● Developing legacy applications (tcl and cobol)

– Database isam (FAIRCOMS) powered by sql
– Database sql (postgresql and sqlite)



  

TclOO

Tclrad – Database Interface
Batch processing, subqueries, expressions, conditions, updates, transactions, etc.

Tclrad-Dbc

Tclrad-Pgsql
Queries and Updates

Tkrad
Widgets

Tkrad-Dbc
Database GUI

Pgtcl
pgintcl

Tkrad-Macro
Gui Application, Reporting (Pdf, ODF)

Tcl

Tk
Ttk

Tclrad-Pgsql
Data dictionary interface

Postgresql
RDBMS

Tkrad-Skeleton
Programming Paradigma



  

TclOO

Tclrad – Database Interface
Batch processing, subqueries, expressions, conditions, updates, transactions, etc.

Tclrad-Dbc

Tclrad
SqlFactory

Queries and Updates
Data dictionary

Tkrad
Widgets

Tkrad-Dbc
Database GUI

Pgtcl
Pgintcl
Sqlite
tdbc

Tkrad-Macro
Gui Application, Reporting (Pdf, Libreoffice)

Tcl

Tk, Ttk
wtkrad (js), Androwish

Sql Database

Tkrad-Skeleton
Programming Paradigma



  

Technologies
● Database

● Postgres
– Pgtcl (c extension) or Pgintcl (pure tcl)

● Sqlite3
– Data and application support
– Also present in Postgres deployment

● data transfers
● tables content and resources delivery

● Tdbc
– Postgres and Sqlite3
– Odbc (for Cobol/Faircom Ctree isam integration)

● Huge use of large objects or blobs, depending on 
database capabilities



  

Technologies
● TclOO

● Object management system

● Icons
● Tango icons included



  

Technologies
● Tdom

● Web services (i.e. ECB exchanges)
● Soap (i.e. EC vies vat number checks)
● LibreOffice interface

● Tls
● Internet and Intranet environments

● Nodejs
● Tkrad browser interface

● Androwish
● almost nothing has been done, it just works



  

Technologies
● Pdf4Tcl

● Reporting system

● LibreOffice
● When user wants to maintain own forms
● As a pdf generator
● Mandatory when pdf/a is required

● Tcllib
● Mail and Ldap
● Internet standard file format (mime, base64, etc)
● Pki infrastructure ( sha1, sha256, uuid )



  

Tclrad

● Development
● Applications never speaks SQL, just tclrad
● Applications never speaks Tk, just tkrad
● Use also existing databases, data dictionary is 

parsed on the fly when application initializes the 
specified object

● Command line development
● Command line deployment



  

Tclrad

● Delivery
● Linux 32/64, MacOs/64, Android and Windows 32
● wtkrad is tested on Firefox and Chrome
● some days of work for languages support (msgcat)

● Maintenance
● Release cycle written in Tcl
● fossil in the future ?

● Support
● Context Ticketing System



  

Demo Application: Goals
● An order maintenance application
● Multicompany
● Multidatabase

● Postgres
● Sqlite

● Customizable
● A single customer should be able to see the 

customized version of a program



  

Demo Application: Structure
● Base system

● Geo informations
– State, County, Town

● Companies end company's customers

● Order System
● Products and orders

● Customize
● Standard order maintenance is customized for a 

single deployment



  

Demo Application: Delivery plan
● projects

● libraries, programs, resources (i.e. openoffice 
templates), database catalog

● dependency
● tables priorities (no county without state)
● orders needs customers (the order application 

needs the customer data entry module)

● application is delivered as a mix of one or more 
subproject, mixed in a mega project named 
release

● Release project defines also how subprojects 
fire themselves into distribution



  

Demo Application: Projects
● tclrad, the framework

● copied as is into the application development tree

● runtime, the base applications
● depends on tclrad
● delivered as end-user application

● orders
● depends on runtime and tclrad
● delivered as end-user application

● mycustomer
● depends on orders, runtime and tclrad
● delivered as customer level application



  

Demo Application: Release
● release project

● the tree that is delivered to customers
● each installation has all or a subset of the 

application's projects, depending on the customer
● delivery and updates are generated from this tree

● A look to packages/profile
● It profiles the distribution
● The environment TCLRAD_CONNECT

● A look to etc/sqlite.con and etc/postgres.con
● The connections to the database system

– Sqlite and postgres



  

Demo Project Runtime
● Fire the shell into a project

● <RAD>/bin/radproject runtime
● <RAD> is the root development, here /tcl
● Projects are assumed to be in <RAD>/prj
● Environment

– PRJ defines project location
– TCLLIBPATH defines the library search path
– TCLCODEPATH defines the modules search path
– TCLRAD_PROJECT is the projects root directory

● runtime is the master project
● the master project contains the directory catalog
● it defines the application's database schema



  

Catalog's domains
● directory catalog/domains defines columns 

common to more than one table
● customer code is a domain and its structure is 

defined once



  

Catalog's dictionary
● directory catalog/dictionary defines

● context
– STATIC (common to all installed systems)

● state, county and town are the same everywhere

– ENV (common to all database instances on a system)
● large objects addressing, special table lo_root and xml_root
● templates, special table lo_templates

– SLOT (the application data)
● customer table
● special table, lo_report

● dictionary project ownership
● runtime does not need product

● priorities
● customers table must be created after company table



  

Catalog's tables
● directory catalog/tables defines table's related 

resources
● tables/state/050functions.pre

– defines functions to be created BEFORE the table
● tables/state/table.def

– defines the table state

● tables county and town
● tables company and customer
● table product and order_header
● tables order_detail

● tables/order_detail/050view_orders.pst



  

Browsing Catalog
● catalog/dictionary/tclrad

● the context, project and priority file

● catalog/domains/tclrad
● the domain file, defines the fields shared by more 

than one table

● catalog/tables/*
● define the tables

● Browse it



  

Project's binary tree, bin_prog
● module.tcl, is a main tcl program
● tcllib, contains libraries (*/pkgIndex.tcl)
● tclpkg

● foreach project, the file project_name.lib is the mega 
pkgIndex of the projects

● projects_image
● foreach project, file project.lib contains a 

computational description of the project's objects
● the update process trusts these files to decide what 

has to be upgraded or retired 



  

Project's binary tree, bin_shell
● bin_shell

● contains batch commands and utilities
● tipically, these commands are not used by end-user



  

Compiling catalog
● browse binary tree
● dbcompile

● Assembles the library dbCatalog
– dbCatalog resides on source library directory tcllib

● dbCatalog.pkg, the library profile
● dbCatalog.dic, a zip file containing the catalog tree

● Compiles the library
– library dbCatalog, like other libraries, is compiled and 

commited to the bin_prog/tcllib/dbCatalog directory, 
under the project binary tree

● dbCatalog
● look at a standard library definition



  

Releasing catalog
● put_project

● This command commit the binary project's tree to 
the release project

● executed when all modules and libraries are 
committed to binary tree

● ptcl module_name
● compiles module from tclprog directory

● ptcl library_name
● compiles library from tcllib directory

● prjcompile
● compile the whole project



  

Testing Catalog
● by default, the demo application works with 

sqlite
● check the environment TCLRAD_CONNECT

● pgprofile change the connection to postgres 
and run the command

– dbtable -table state (test sqlite)
– pgprofile dbtable -table state (test postgres)

● dbinfo connect and parse db dictionary
– dbinfo -table state

● dbsql is a wrapper to the database's 
appropriate command line tool



  

Testing catalog
● dbtable -table order_header

● the concept of the function tclrad_sequence
● the function delivery_year

– browse sqlite database
– select from postgres database

● dbtable -table order_detail
● selecting the view in sqlite

– echo “select * from order_view limit 2;” | dbsql
● selecting the view in postgres

– echo “select * from order_view limit 2;” | pgprofile dbsql



  

Generating the database
● tclrun tkradcatalog

● tclrun is the tclsh runtime wrapper
● it searches the TCLCODEPATH to find the module
● tkradcatalog is the database maintenance module

● pgprofile tclrun tkradcatalog
● the same on postgres
● here context is much more visible

● catalog by project and context
● tclrun tkradcatalog -project runtime
● tclrun tkradcatalog -project runtime -schema SLOT



  

Library baseLib
● browse module

● baseLib.pkg
● baseLib.tcl

– setup an application
– application opens and run the connection object

● baseState.tcl ( mantainer and lookup )
● baseTown.tcl ( mantainer, lookup and foreign )
● baseCompany.tcl

● compile library baseLib with ptcl
● compile whole project with prjcompile
● commit the project with put_project



  

Modules
● sqlExamples.tcl

● some examples on sql factory structure

● lockExamples.tcl
● how columns are shared between objects

● baseMnt.tcl
● driving tclrad objects using alias

● compile module with ptcl
● run module with tclrun



  

Compile the menu
● compile the application's menu

● look tclprog/tkmenu-main.tcl
● look tclprog/runMenu.tcl

● compile the program: ptcl
● ptcl runMenu

– it is scripting, the action is symbolic. We tell to the system 
that program is ready to be commited on release

● ptcl tkmenu-main.tcl
– committed as tkmenu/main.tcl



  

Demo Application: Release
● Compile and commit all the projects

● fire into release project
– <RAD>/bin/radproject release

● distcompile
● run the application

– tclrun runMenu
● run the application customized

– tclrun runMenu -custom mycustomer
– see the order maintenance program
– Printing orders
– Reporting



  

Release deployment tree
● bin_shell
● bin_prog
● install

● distrib
– contains the distribution tree

● file YYYYNNNN are the updates lists

● generate the distribution
● cd $PRJ/install/distrib
● sh make.sh



  

Upgrading the application
● Upgrade process

● The files to be delivered are computed using the 
timestamp of the release file

● The file list is then splitted into projects using the 
normal distribution algorithm

● The updates of the catalog are submitted as a 
project named 'updates', customized under 
bin_prog/updates

● The projects that need to be upgraded, on a 
customer point of view, is defined by the content of 
the projects_image directory

● The files are then distributed as a subset of the 
full application



  

Upgrading the application
● Fire into updates project
● Browse $PRJ/sqlfix

● sqlfix -release 20140001
● put_project

● Fire into release project
● change path to $PRJ/bin_prog/updates/20140001
● tclrun tkradupdates -sqlplay database.zip



  

The catalog macro language

● Used on
● delivery to build or recheck (reinstall) the 

appropriate catalog
● updates to make appopriate database change
● distributing STATIC context tables

● Catalog
● each update can contain the full catalog, to 

maintain the exact time context of the fixes



  

The install/upgrade logic

● Context
● STATIC and ENV are upgraded one time
● a loop on each SLOT is then executed
● each schema containing a table named 'release' is 

assumed to be a tclrad schema, to be maintained
● Contexts are assumed from the declaration inside 

the connection profile (TCLRAD_CONNECT)

● All the contexts can be deployed into a single 
schema (i.e. sqlite 'main')



  

Deploy to web

● Fire into release project
● execute command nodestart
● check /tcl/node/nodesite/site
● browse http://127.0.0.1:6666



  

Deploy to mobile

● Used only in mobile selling context
● Initially worked on China imported tablets with 

Linux Fedora installed
● Now we are testing Androwish
● Dedicated hardware



  

A look to a real world deployment

● Browse
● bin_prog

– tcllib, updates, packages_image, tclpkg
● catalog

● Use the application
● Install the application

● download installer
● setup applications
● run application



  

A look to a “real world” deployment

● Use a real world database
● Tclrad shows as

● Tcl can also be an alternative to Cobol and Rpg



  

Developers

● Piera “Vampiera” Poggio
● piera@metodo.net
● wtkrad designer and developer

● Franco Violi
● franco.violi@metodo.net

mailto:piera@metodo.net


  

Question time
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