

Tclrad

Rapid Application Development System
a proposal to the Tcl community

Born in Metodo, Modena

● Company
● 20 employers (programmers, helpdesk, ...)
● IT company in a holding of 650 employers
● 1200 linux desktops (including customers)
● 360 linux servers (including customers)
● 6900 tcl modules, 1.410.000 lines of tcl code
● Custom Linux distribution (itux, a fedora/centos

spin)
● Developing legacy applications (tcl and cobol)

– Database isam (FAIRCOMS) powered by sql
– Database sql (postgresql and sqlite)

TclOO

Tclrad – Database Interface
Batch processing, subqueries, expressions, conditions, updates, transactions, etc.

Tclrad-Dbc

Tclrad-Pgsql
Queries and Updates

Tkrad
Widgets

Tkrad-Dbc
Database GUI

Pgtcl
pgintcl

Tkrad-Macro
Gui Application, Reporting (Pdf, ODF)

Tcl

Tk
Ttk

Tclrad-Pgsql
Data dictionary interface

Postgresql
RDBMS

Tkrad-Skeleton
Programming Paradigma

TclOO

Tclrad – Database Interface
Batch processing, subqueries, expressions, conditions, updates, transactions, etc.

Tclrad-Dbc

Tclrad
SqlFactory

Queries and Updates
Data dictionary

Tkrad
Widgets

Tkrad-Dbc
Database GUI

Pgtcl
Pgintcl
Sqlite
tdbc

Tkrad-Macro
Gui Application, Reporting (Pdf, Libreoffice)

Tcl

Tk, Ttk
wtkrad (js), Androwish

Sql Database

Tkrad-Skeleton
Programming Paradigma

Technologies
● Database

● Postgres
– Pgtcl (c extension) or Pgintcl (pure tcl)

● Sqlite3
– Data and application support
– Also present in Postgres deployment

● data transfers
● tables content and resources delivery

● Tdbc
– Postgres and Sqlite3
– Odbc (for Cobol/Faircom Ctree isam integration)

● Huge use of large objects or blobs, depending on
database capabilities

Technologies
● TclOO

● Object management system

● Icons
● Tango icons included

Technologies
● Tdom

● Web services (i.e. ECB exchanges)
● Soap (i.e. EC vies vat number checks)
● LibreOffice interface

● Tls
● Internet and Intranet environments

● Nodejs
● Tkrad browser interface

● Androwish
● almost nothing has been done, it just works

Technologies
● Pdf4Tcl

● Reporting system

● LibreOffice
● When user wants to maintain own forms
● As a pdf generator
● Mandatory when pdf/a is required

● Tcllib
● Mail and Ldap
● Internet standard file format (mime, base64, etc)
● Pki infrastructure (sha1, sha256, uuid)

Tclrad

● Development
● Applications never speaks SQL, just tclrad
● Applications never speaks Tk, just tkrad
● Use also existing databases, data dictionary is

parsed on the fly when application initializes the
specified object

● Command line development
● Command line deployment

Tclrad

● Delivery
● Linux 32/64, MacOs/64, Android and Windows 32
● wtkrad is tested on Firefox and Chrome
● some days of work for languages support (msgcat)

● Maintenance
● Release cycle written in Tcl
● fossil in the future ?

● Support
● Context Ticketing System

Demo Application: Goals
● An order maintenance application
● Multicompany
● Multidatabase

● Postgres
● Sqlite

● Customizable
● A single customer should be able to see the

customized version of a program

Demo Application: Structure
● Base system

● Geo informations
– State, County, Town

● Companies end company's customers

● Order System
● Products and orders

● Customize
● Standard order maintenance is customized for a

single deployment

Demo Application: Delivery plan
● projects

● libraries, programs, resources (i.e. openoffice
templates), database catalog

● dependency
● tables priorities (no county without state)
● orders needs customers (the order application

needs the customer data entry module)

● application is delivered as a mix of one or more
subproject, mixed in a mega project named
release

● Release project defines also how subprojects
fire themselves into distribution

Demo Application: Projects
● tclrad, the framework

● copied as is into the application development tree

● runtime, the base applications
● depends on tclrad
● delivered as end-user application

● orders
● depends on runtime and tclrad
● delivered as end-user application

● mycustomer
● depends on orders, runtime and tclrad
● delivered as customer level application

Demo Application: Release
● release project

● the tree that is delivered to customers
● each installation has all or a subset of the

application's projects, depending on the customer
● delivery and updates are generated from this tree

● A look to packages/profile
● It profiles the distribution
● The environment TCLRAD_CONNECT

● A look to etc/sqlite.con and etc/postgres.con
● The connections to the database system

– Sqlite and postgres

Demo Project Runtime
● Fire the shell into a project

● <RAD>/bin/radproject runtime
● <RAD> is the root development, here /tcl
● Projects are assumed to be in <RAD>/prj
● Environment

– PRJ defines project location
– TCLLIBPATH defines the library search path
– TCLCODEPATH defines the modules search path
– TCLRAD_PROJECT is the projects root directory

● runtime is the master project
● the master project contains the directory catalog
● it defines the application's database schema

Catalog's domains
● directory catalog/domains defines columns

common to more than one table
● customer code is a domain and its structure is

defined once

Catalog's dictionary
● directory catalog/dictionary defines

● context
– STATIC (common to all installed systems)

● state, county and town are the same everywhere

– ENV (common to all database instances on a system)
● large objects addressing, special table lo_root and xml_root
● templates, special table lo_templates

– SLOT (the application data)
● customer table
● special table, lo_report

● dictionary project ownership
● runtime does not need product

● priorities
● customers table must be created after company table

Catalog's tables
● directory catalog/tables defines table's related

resources
● tables/state/050functions.pre

– defines functions to be created BEFORE the table
● tables/state/table.def

– defines the table state

● tables county and town
● tables company and customer
● table product and order_header
● tables order_detail

● tables/order_detail/050view_orders.pst

Browsing Catalog
● catalog/dictionary/tclrad

● the context, project and priority file

● catalog/domains/tclrad
● the domain file, defines the fields shared by more

than one table

● catalog/tables/*
● define the tables

● Browse it

Project's binary tree, bin_prog
● module.tcl, is a main tcl program
● tcllib, contains libraries (*/pkgIndex.tcl)
● tclpkg

● foreach project, the file project_name.lib is the mega
pkgIndex of the projects

● projects_image
● foreach project, file project.lib contains a

computational description of the project's objects
● the update process trusts these files to decide what

has to be upgraded or retired

Project's binary tree, bin_shell
● bin_shell

● contains batch commands and utilities
● tipically, these commands are not used by end-user

Compiling catalog
● browse binary tree
● dbcompile

● Assembles the library dbCatalog
– dbCatalog resides on source library directory tcllib

● dbCatalog.pkg, the library profile
● dbCatalog.dic, a zip file containing the catalog tree

● Compiles the library
– library dbCatalog, like other libraries, is compiled and

commited to the bin_prog/tcllib/dbCatalog directory,
under the project binary tree

● dbCatalog
● look at a standard library definition

Releasing catalog
● put_project

● This command commit the binary project's tree to
the release project

● executed when all modules and libraries are
committed to binary tree

● ptcl module_name
● compiles module from tclprog directory

● ptcl library_name
● compiles library from tcllib directory

● prjcompile
● compile the whole project

Testing Catalog
● by default, the demo application works with

sqlite
● check the environment TCLRAD_CONNECT

● pgprofile change the connection to postgres
and run the command

– dbtable -table state (test sqlite)
– pgprofile dbtable -table state (test postgres)

● dbinfo connect and parse db dictionary
– dbinfo -table state

● dbsql is a wrapper to the database's
appropriate command line tool

Testing catalog
● dbtable -table order_header

● the concept of the function tclrad_sequence
● the function delivery_year

– browse sqlite database
– select from postgres database

● dbtable -table order_detail
● selecting the view in sqlite

– echo “select * from order_view limit 2;” | dbsql
● selecting the view in postgres

– echo “select * from order_view limit 2;” | pgprofile dbsql

Generating the database
● tclrun tkradcatalog

● tclrun is the tclsh runtime wrapper
● it searches the TCLCODEPATH to find the module
● tkradcatalog is the database maintenance module

● pgprofile tclrun tkradcatalog
● the same on postgres
● here context is much more visible

● catalog by project and context
● tclrun tkradcatalog -project runtime
● tclrun tkradcatalog -project runtime -schema SLOT

Library baseLib
● browse module

● baseLib.pkg
● baseLib.tcl

– setup an application
– application opens and run the connection object

● baseState.tcl (mantainer and lookup)
● baseTown.tcl (mantainer, lookup and foreign)
● baseCompany.tcl

● compile library baseLib with ptcl
● compile whole project with prjcompile
● commit the project with put_project

Modules
● sqlExamples.tcl

● some examples on sql factory structure

● lockExamples.tcl
● how columns are shared between objects

● baseMnt.tcl
● driving tclrad objects using alias

● compile module with ptcl
● run module with tclrun

Compile the menu
● compile the application's menu

● look tclprog/tkmenu-main.tcl
● look tclprog/runMenu.tcl

● compile the program: ptcl
● ptcl runMenu

– it is scripting, the action is symbolic. We tell to the system
that program is ready to be commited on release

● ptcl tkmenu-main.tcl
– committed as tkmenu/main.tcl

Demo Application: Release
● Compile and commit all the projects

● fire into release project
– <RAD>/bin/radproject release

● distcompile
● run the application

– tclrun runMenu
● run the application customized

– tclrun runMenu -custom mycustomer
– see the order maintenance program
– Printing orders
– Reporting

Release deployment tree
● bin_shell
● bin_prog
● install

● distrib
– contains the distribution tree

● file YYYYNNNN are the updates lists

● generate the distribution
● cd $PRJ/install/distrib
● sh make.sh

Upgrading the application
● Upgrade process

● The files to be delivered are computed using the
timestamp of the release file

● The file list is then splitted into projects using the
normal distribution algorithm

● The updates of the catalog are submitted as a
project named 'updates', customized under
bin_prog/updates

● The projects that need to be upgraded, on a
customer point of view, is defined by the content of
the projects_image directory

● The files are then distributed as a subset of the
full application

Upgrading the application
● Fire into updates project
● Browse $PRJ/sqlfix

● sqlfix -release 20140001
● put_project

● Fire into release project
● change path to $PRJ/bin_prog/updates/20140001
● tclrun tkradupdates -sqlplay database.zip

The catalog macro language

● Used on
● delivery to build or recheck (reinstall) the

appropriate catalog
● updates to make appopriate database change
● distributing STATIC context tables

● Catalog
● each update can contain the full catalog, to

maintain the exact time context of the fixes

The install/upgrade logic

● Context
● STATIC and ENV are upgraded one time
● a loop on each SLOT is then executed
● each schema containing a table named 'release' is

assumed to be a tclrad schema, to be maintained
● Contexts are assumed from the declaration inside

the connection profile (TCLRAD_CONNECT)

● All the contexts can be deployed into a single
schema (i.e. sqlite 'main')

Deploy to web

● Fire into release project
● execute command nodestart
● check /tcl/node/nodesite/site
● browse http://127.0.0.1:6666

Deploy to mobile

● Used only in mobile selling context
● Initially worked on China imported tablets with

Linux Fedora installed
● Now we are testing Androwish
● Dedicated hardware

A look to a real world deployment

● Browse
● bin_prog

– tcllib, updates, packages_image, tclpkg
● catalog

● Use the application
● Install the application

● download installer
● setup applications
● run application

A look to a “real world” deployment

● Use a real world database
● Tclrad shows as

● Tcl can also be an alternative to Cobol and Rpg

Developers

● Piera “Vampiera” Poggio
● piera@metodo.net
● wtkrad designer and developer

● Franco Violi
● franco.violi@metodo.net

mailto:piera@metodo.net

Question time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

