The Python Library Reference
Release 3.2.2

Guido van Rossum
Fred L. Drake, Jr., editor

September 03, 2011

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Built-in Constants 23
3.1 Constants added by the sitemodule e 23
Built-in Types 25
4.1 Truth Value Testing o i it e e e e e e e 25
4.2 Boolean Operations — and, Or, NOT . . v v v v v v v v v i e e e e e e e e e e e e e 25
43 CompariSONS . . v v v v v v e 26
4.4 Numeric Types — int, float,complex« oottt v ittt 26
4.5 Tterator Types L e e 32
4.6 Sequence Types — str, bytes, bytearray, list, tuple, range 33
477 SetTypes — set, frozenset v v i v v i i e e e e e e e e e e e e e e 44
4.8 Mapping Types — dicCt o v i i e e e e e e e e e e e e 46
4.9 mMemOTYVIEW tYPE . .« ¢ v v i i i e 49
4.10 Context Manager Types L 52
4.11 Other Built-in Types L o o e e 52
4,12 Special Atributes e 55
Built-in Exceptions 57
5.1 Exception hierarchy e 61
String Services 63
6.1 string-— Common string Operationso 63
6.2 re — Regular expression Operations e e e e e e e e e 72
6.3 struct — Interpret bytes as packed binarydata 89
6.4 difflib — Helpers for computingdeltas 94
6.5 textwrap —Textwrappingandfilling oo, 103
6.6 codecs—Codecregistry andbaseclasses oL o oL, 106
6.7 unicodedata—Unicode Database 120
6.8 stringprep — Internet String Preparation oL oo 121
Data Types 125
7.1 datetime — Basicdate and time types Lo e 125
7.2 calendar — General calendar-related functions 150
7.3 collections —Container datatypes v v v v v i e e e e e e e e e e e e e e e e 153
74 heapg—Heap queue algorithm L o 169
7.5 bisect — Array bisection algorithm oL oo 172

7.6 array — Efficient arrays of numeric values oL oo 174

7.7 sched—Eventscheduler 177
7.8 queue — A synchronized queue classo e e 179
7.9 weakref — Weakreferences L 181
7.10 types —Names forbuilt-intypes e 185
7.11 copy — Shallow and deep copy operationso e 186
7.12 pprint —Datapretty printer e e e e e e e e e e e e e e e e e e 187
7.13 reprlib — Alternate repr () implementation e 191
8 Numeric and Mathematical Modules 195
8.1 numbers— Numeric abstractbaseclasses 195
8.2 math — Mathematical functions L 198
8.3 cmath — Mathematical functions for complex numbers 202
8.4 decimal — Decimal fixed point and floating point arithmetic 205
8.5 fractions—Rationalnumbers L e 229
8.6 random — Generate pseudo-random numberso oLl e e 231
9 Functional Programming Modules 237
9.1 itertools — Functions creating iterators for efficient looping 237
9.2 functools — Higher order functions and operations on callable objects 249
9.3 operator — Standard operators as functions oL Lo 253
9.4 Inplace Operators v v v v i e e e e e e e e e e e e e e e e e e 258
10 File and Directory Access 261
10.1 os.path — Common pathname manipulations 261
10.2 fileinput — Iterate over lines from multiple input streams 264
10.3 stat —Interpreting stat () results L 267
10.4 filecmp — File and Directory CompariSons v v v v v v v v v it e e e 271
10.5 tempfile — Generate temporary files and directories, 272
10.6 glob — Unix style pathname pattern eXpansion v v v v v v v v v v v e i 275
10.7 fnmatch — Unix filename pattern matching 0oL ... 276
10.8 linecache —Randomaccesstotextlines 277
10.9 shutil — High-level file operations e 278
10.10 macpath — Mac OS 9 path manipulation functions 282
11 Data Persistence 285
11.1 pickle — Pythonobject serialization 285
11.2 copyreg— Register pickle supportfunctions 296
11.3 shelve —Pythonobject persistence v v v v i v v vt e e e e 296
11.4 marshal — Internal Python object serialization 299
11.5 dbm — Interfaces to Unix “databases” 300
11.6 sglite3 — DB-API 2.0 interface for SQLite databases 303
12 Data Compression and Archiving 323
12.1 zlib — Compression compatible withgzip 323
12.2 gzip—Supportforgzipfiles 325
12.3 Dbz2 — Compression compatible withbzip2 327
124 zipfile— Work withZIParchives e 329
12.5 tarfile — Read and write tar archive files L. o Lo 334
13 File Formats 343
13.1 csv—CSV File Reading and Writing ittt 343
13.2 configparser — Configuration file parser e 349
13.3 netrc—netrc file processingo o i e e e e e e e e e 365

13.4 xdrlib—Encode anddecode XDRdata 366

13.5 plistlib — Generate and parse Mac OS X .plistfiles. 369

14 Cryptographic Services 371
14.1 hashlib — Secure hashes and message digests 371
14.2 hmac — Keyed-Hashing for Message Authentication 373

15 Generic Operating System Services 375
15.1 os — Miscellaneous operating system interfaces oo 375
15.2 io— Core tools for working with streams e 401
15.3 time — Time access and CONVETSIONS v v v v v v vt bttt e e e e et e e e 411
15.4 argparse — Parser for command-line options, arguments and sub-commands 417
15.5 optparse — Parser for command line options L. oL oo 445
15.6 getopt — C-style parser for command line options 470
15.7 logging — Logging facility for Python L 472
15.8 logging.config—Logging configuration e 485
159 logging.handlers—Logginghandlers 494
15.10 getpass — Portable passwordinput 0oL 504
15.11 curses — Terminal handling for character-cell displays 504
15.12 curses. textpad — Text input widget for curses programs 520
15.13 curses.ascii — Utilities for ASCII characters 521
15.14 curses.panel — A panel stack extension forcurses 523
15.15 plat form — Access to underlying platform’s identifyingdata 525
15.16 errno — Standard errno system symbols o L 528
15.17 ctypes — A foreign function library for Python o oL 534

16 Optional Operating System Services 567
16.1 select — Waiting for /O completion 567
16.2 threading — Thread-based parallelism, 572
16.3 multiprocessing— Process-based parallelism 583
16.4 concurrent.futures — Launching parallel tasks 633
16.5 mmap — Memory-mapped file support oL o 638
16.6 readline —GNUreadlineinterface 641
16.7 rlcompleter — Completion function for GNU readline 644
16.8 dummy_threading — Drop-in replacement for the threadingmodule 644
169 _thread — Low-level threading API 645
16.10 _dummy_thread — Drop-in replacement for the _threadmodule 647

17 Interprocess Communication and Networking 649
17.1 subprocess — Subprocess management i et e e e e 649
17.2 socket — Low-level networking interface 659
17.3 ss1 — TLS/SSL wrapper for socket objects e 671
17.4 signal — Set handlers for asynchronous events L. 684
17.5 asyncore — Asynchronous sockethandler 687
17.6 asynchat — Asynchronous socket command/response handler 691

18 Internet Data Handling 695
18.1 email — Anemail and MIME handling package 695
182 json—IJSONencoderanddecoder 727
183 mailcap —Mailcapfilehandling o 732
18.4 mailbox — Manipulate mailboxes in various formats 733
18.5 mimetypes — Map filenames to MIME types L o 750
18.6 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 753
18.7 binhex — Encode and decode binhex4 files Lo . 754
18.8 binascii — Convert between binary and ASCIT, 755

18.9 quopri — Encode and decode MIME quoted-printabledata 757

19

20

21

22

18.10 uu — Encode and decode uuencode files e

Structured Markup Processing Tools

19.1 html — HyperText Markup Language support vt
19.2 html.parser — Simple HTML and XHTML parser
19.3 html.entities — Definitions of HTML general entities
19.4 xml.parsers.expat — Fast XML parsingusing Expat
19.5 =xml.dom — The Document Object Model API
19.6 xml.dom.minidom — Lightweight DOM implementation
19.7 xml.dom.pulldom — Support for building partial DOM trees
19.8 xml.sax — Support for SAX2 parsers v v vt e e e e e e e
19.9 xml.sax.handler — Baseclasses for SAX handlers
19.10 xml.sax.saxutils — SAX Utilities o o e
19.11 xml.sax.xmlreader — Interface for XML parsers
19.12 xml.etree.ElementTree — The ElementTree XML APT

Internet Protocols and Support

20.1 webbrowser — Convenient Web-browser controller
20.2 cgi — Common Gateway Interface support e
20.3 cgitb — Traceback manager for CGLscripts o i i i i i it
20.4 wsgiref — WSGI Utilities and Reference Implementation
20.5 urllib.request — Extensible library foropening URLs
20.6 urllib.response — Responseclassesusedbyurllib
20.7 urllib.parse —Parse URLsintocomponents,
20.8 urllib.error — Exception classes raised by urllib.request
209 urllib.robotparser — Parserforrobots.txt
20.10 http.client — HTTPprotocolclient
20.11 ftplib —FTPprotocolclient e
20.12 poplib —POP3 protocol client e
20.13 imaplib —IMAP4 protocolclient e
20.14 nntplib — NNTPprotocolclient it e e
20.15 smtplib — SMTP protocolclient e e
20.16 smtpd — SMTP Server o o o e e e e
20.17 telnetlib —Telnetclient e
20.18 uuid — UUID objects according to RFC 4122
20.19 socketserver — A framework for network servers oL oL
20.20 http.server — HTTPservers e e e e e
20.21 http.cookies — HTTP state managementt v i v v i v v,
20.22 http.cookiejar — Cookie handling for HTTPclients
20.23 xmlrpc.client — XML-RPCclientaccess v i v i v i i it it e e
20.24 xmlrpc.server — Basic XML-RPCservers,

Multimedia Services

21.1 audioop — Manipulateraw audiodata oL o
21.2 aifc—Read and write AIFFand AIFCfiles
21.3 sunau—Readand write Sun AUfiles L L
214 wave —Read and write WAV files L
21.5 chunk —Read IFFchunkeddata
21.6 colorsys — Conversions between colorsystems Lo
21.7 imghdr — Determine the type of animage
21.8 sndhdr — Determine type of sound file L L e
21.9 ossaudiodev — Access to OSS-compatible audio devices,

Internationalization
22.1 gettext — Multilingual internationalization services

759
759
759
762
762
771
781
785
786
787
792
793
797

805
805
807
813
814
823
838
838
844
845
845
851
856
858
863
869
874
876
879
881
889
893
896
904
911

917
917
920
922
925
927
928
929
929
930

935

23

24

25

26

27

28

29

22.2 locale — Internationalization SEIVICES v v v v v v v v e e e e e e e e e e e e

Program Frameworks

23.1 turtle—Turtle graphics L e
23.2 cmd — Support for line-oriented command interpreterso oL
23.3 shlex —Simple lexical analysis o o L e e e e e e

Graphical User Interfaces with Tk

24.1 tkinter —Pythoninterfaceto Tcl/Tk
242 tkinter.ttk —Tkthemed widgets e
243 tkinter.tix —Extensionwidgetsfor Tko oo,
244 tkinter.scrolledtext — Scrolled Text Widget
245 IDLE e
24.6 Other Graphical User Interface Packages

Development Tools

25.1 pydoc — Documentation generator and online help system
25.2 doctest — Testinteractive Pythonexamples oL,
25.3 unittest — Unittesting framework e
25.4 2to3 - Automated Python 2 to 3 code translation oL L.
25.5 test — Regression tests package forPython.o o000
25.6 test.support — Utilities for the Python testsuite

Debugging and Profiling

26.1 bdb — Debugger framework
26.2 pdb — The Python Debugger e
26.3 The Python Profilers e e e e e e
26.4 timeit — Measure execution time of small code snippets
26.5 trace — Trace or track Python statementexecution

Python Runtime Services

27.1 sys — System-specific parameters and functions L.
27.2 sysconfig— Provide access to Python’s configuration information.
273 builtins —Built-inobjects L o
274 __main___ —Top-level script environmento
27.5 warnings—Warningcontrol e e
27.6 contextlib — Utilities for with-statementcontexts
2777 abc—Abstract Base Classes e e
278 atexit —Exithandlers
279 traceback — Print or retrieve a stack traceback oL
27.10 __ future_ — Future statement definitions e e e e
27.11 gc — Garbage Collectorinterface i e e e e
27.12 inspect — Inspectlive objects L e e e e e e
27.13 site — Site-specific configurationhook oL oo
27.14 fpectl — Floating point exceptioncontrol L
27.15 distutils — Building and installing Python modules

Custom Python Interpreters
28.1 code —Interpreter base classes L. e
28.2 codeop — Compile Pythoncode e

Importing Modules

29.1 imp — Accessthe importinternals
29.2 zipimport — Import modules from Ziparchives 0oL,
29.3 pkgutil — Package extension utility Lo e e e

951
951
986
991

29.4 modulefinder —Find modulesused by ascript oL,
29.5 runpy — Locating and executing Pythonmodules,
29.6 importlib - Animplementation of import L L.

30 Python Language Services

30.1 parser — Access Pythonparsetrees o i e e e e
30.2 ast — Abstract Syntax Treeso e e
30.3 symtable — Access to the compiler’s symbol tables 0oL,
30.4 symbol — Constants used with Python parse trees,
30.5 token — Constants used with Python parsetrees
30.6 keyword— Testing for Pythonkeywords
30.7 tokenize — Tokenizer for Pythonsource
30.8 tabnanny — Detection of ambiguous indentation oL,
30.9 pyclbr — Pythonclass browsersupport Lo oL
30.10 py_compile — Compile Python sourcefiles
30.11 compileall — Byte-compile Python libraries
30.12 dis — Disassembler for Python bytecode o oo
30.13 pickletools — Tools for pickle developers

31 Miscellaneous Services

31.1 formatter — Generic output formatting e e

32 MS Windows Specific Services

32.1 msilib — Read and write Microsoft Installer files
32.2 msvcrt — Useful routines from the MS VC++runtime
323 winreg— Windows registry aCCess v v v v v i bt e e e e e e e
32.4 winsound — Sound-playing interface for Windows,

33 Unix Specific Services

33.1 posix — The most common POSIX systemcalls
33.2 pwd—The password database L.
33.3 spwd — The shadow password database
334 grp—Thegroupdatabase e e e e e e e e
33.5 crypt — Function to check Unix passwords e
33.6 termios —POSIXstylettycontrol L
33.7 tty —Terminal control functions e e e
33.8 pty —Pseudo-terminal utilities L
339 fcntl —The fentl () and ioctl () systemecalls o
33.10 pipes — Interface to shell pipelines e
33.11 resource — Resource usage information o oL oL
33.12 nis — Interface to Sun’s NIS (Yellow Pages)
33.13 syslog — Unix syslog library routines o

34 Undocumented Modules

A

34.1 Platform specific modules e

Glossary

Bibliography

B

About these documents
B.1 Contributors to the Python Documentation

History and License
C.1 Historyofthe software e e

vi

C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software

D Copyright
Python Module Index

Index

vii

viii

The Python Library Reference, Release 3.2.2

Release 3.2
Date September 03, 2011

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 3.2.2

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual), or
look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a section or two. Regardless of the order
in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the remainder of the
manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 3.2.2

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here

in alphabetical order.

Built-in Functions

abs () dict () help () min () setattr ()
all() dir () hex () next () slice ()

any () divmod () id() object () sorted ()
ascii() enumerate () | input () oct () staticmethod ()
bin () eval () int () open () str()

bool () exec () isinstance () ord () sum ()
bytearray () filter () issubclass () pow () super ()
bytes () float () iter () print () tuple ()
callable () format () len () property () | type ()

chr () frozenset () list () range () vars ()
classmethod () getattr () locals () repr () zip ()
compile () globals () map () reversed() | __import__ ()
complex () hasattr () max () round ()

delattr () hash () memoryview () set ()
abs (x)

Return the absolute value of a number. The argument may be an integer or a floating point number. If the

argument is a complex number, its magnitude is returned.

all (iterable)

Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:

if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable) :
for element in iterable:
if element:
return True
return False

The Python Library Reference, Release 3.2.2

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII char-
acters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to that
returned by repr () in Python 2.

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python int
object, it has to define an __index___ () method that returns an integer.

bool ([x])
Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot be
subclassed further. Its only instances are False and True.

bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray type is a mutable sequence of integers in the range 0 <= x < 256.
It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as most
methods that the bytes type has, see Byfes and Byte Array Methods.

The optional source parameter can be used to initialize the array in a few different ways:

oIf it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using str.encode ().

oIf it is an integer, the array will have that size and will be initialized with null bytes.

oIf it is an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

oIf it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.

bytes ([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in therange 0 <= x < 256. bytes
is an immutable version of bytearray — it has the same non-mutating methods and the same indexing and
slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.

callable (object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible that
a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class
returns a new instance); instances are callable if their class hasa _ call__ () method. New in version 3.2:
This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode codepoint is the integer i. For example, chr (97)
returns the string " a’. This is the inverse of ord (). The valid range for the argument is from O through

1,114,111 (Ox10FFFF in base 16). ValueError will be raised if i is outside that range.

Note that on narrow Unicode builds, the result is a string of length two for i greater than 65,535 (OxFFFF in
hexadecimal).

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.2

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in function for
details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in this
section.

For more information on class methods, consult the documentation on the standard type hierarchy in fypes.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)

Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source
can either be a string or an AST object. Refer to the ast module documentation for information on how to
work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (* <string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be ' exec’ if source consists of a
sequence of statements, ' eval’ if it consists of a single expression, or ’ single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the compi-
lation of source. If neither is present (or both are zero) the code is compiled with those future statements that are
in effect in the code that is calling compile. If the flags argument is given and dont_inherit is not (or is zero) then
the future statements specified by the flags argument are used in addition to those that would be used anyway.
If dont_inherit is a non-zero integer then the flags argument is it — the future statements in effect around the call
to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute on the _Feature
instance in the __ future__ module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the
optimization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___
is true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source contains
null bytes.

Note: When compiling a string with multi-line code in * single’ or ' eval’ mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in the
code module.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in ' exec’ mode does not
have to end in a newline anymore. Added the optimize parameter.

complex ([real[, imag]])
Create a complex number with the value real + imag*j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.2.2

(including complex). If imag is omitted, it defaults to zero and the function serves as a numeric conversion
function like int () and float (). If both arguments are omitted, returns 0 j.

The complex type is described in Numeric Types — int, float, complex.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr (x, ’'foobar’) isequivalenttodel x.foobar.

dict ([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is described in Mapping
Types — dict.

For other containers see the built in 1ist, set, and tuple classes, and the col lect ions module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or__getattribute__ () function to cus-
tomize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct
>>> dir () # show the names in the module namespace
["__builtins_ ', ’'__doc__ ', '"__name_ ', ’"struct’]
>>> dir(struct) # show the names 1in the struct module

["Struct’, ’'__builtins_ ', ’__doc_ ', '__file ', '"__ _name__ ',

' _package__'’, ’'_clearcache’, ’'calcsize’, ’'error’, ’'pack’, ’pack_into’,
"unpack’, "unpack_from’]
>>> class Shape (object):

def _ dir_ (self):
return [’area’, ’'perimeter’, ’location’]

>>> s = Shape()
>>> dir(s)

["area’, '"perimeter’, ’location’]

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when
the argument is a class.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.2

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the resultis the same as (a // b, a % b). For floating point numbers the resultis (q,

a % b),where gisusuallymath.floor (a / b) butmay be 1 less than that. Inanycaseq * b + a %
bis very close to a,if a % b is non-zero it has the same sign as b,and 0 <= abs(a % b) < abs(b).

enumerate (iterable, start=0)
Return an enumerate object. iferable must be a sequence, an iferator, or some other object which supports
iteration. The __next__ () method of the iterator returned by enumerate () returns a tuple containing a
count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = [’/Spring’, ’Summer’, ’'Fall’, ’'Winter’]

>>> list (enumerate (seasons))

[(O, "Spring’), (1, ’Summer’), (2, ’'Fall’), (3, ’"Winter’)]
>>> list (enumerate (seasons, start=1))

[(1, "Spring’), (2, 'Summer’), (3, ’'Fall’), (4, "Winter’)]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present
and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed. This means
that expression normally has full access to the standard builtins module and restricted environments are
propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are
omitted, the expression is executed in the environment where eval () is called. The return value is the result
of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval (/
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with exec’ as the mode
argument, eval () ‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to pass
around for use by eval () or exec ().

See ast.literal eval () for a function that can safely evaluate strings with expressions containing only
literals.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If it is

The Python Library Reference, Release 3.2.2

a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error occurs).
! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be valid as file
input (see the section “File input” in the Reference Manual). Be aware that the ret urn and yield statements
may not be used outside of function definitions even within the context of code passed to the exec () function.
The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals and
locals are given, they are used for the global and local variables, respectively. If provided, locals can be any
mapping object.

If the globals dictionary does not contain a value for the key __builtins__, areference to the dictionary of
the built-in module bui 1t ins is inserted under that key. That way you can control what builtins are available to
the executed code by inserting your own __builtins___ dictionary into globals before passing it to exec ().

Note: The built-in functions globals () and locals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function exec () returns.

filter (function, iterable)

Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function(item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

float ([x])

Convert a string or a number to floating point.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional signmay be * +” or ’ =’ ;a ' +’ sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or a positive or negative infinity. More
precisely, the input must conform to the following grammar after leading and trailing whitespace characters are
removed:

Sign - Wy ‘ w_w
infinity = “Infinity” | “inf”

nan = “nan”

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here f1oatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline

conversion mode to convert Windows or Mac-style newlines.

10

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.2

OverflowError will be raised.
For a general Python object x, f1loat (x) delegatesto x.___float__ ().
If no argument is given, 0. O is returned.

Examples:

>>> float ("+1.23")

1.23

>>> float (’ -12345\n")
-12345.0

>>> float ("1e-003")
0.001

>>> float (" +1E6")
1000000.0

>>> float (! —-Infinity’)
—-inf

The float type is described in Numeric Types — int, float, complex.

format (value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec
will depend on the type of the value argument, however there is a standard formatting syntax that is used by
most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling str (value).

Acallto format (value, format_spec) istranslatedto type (value) ._ format__ (format_spec)
which bypasses the instance dictionary when searching for the value’s _ format__ () method. A
TypeError exception is raised if the method is not found or if either the format_spec or the return value are
not strings.

frozenset ([iterable])
Return a frozenset object, optionally with elements taken from iterable. The frozenset type is described in Ser
Types — set, frozenset.

For other containers see the built in dict, 1ist, and tuple classes, and the collect ions module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’)
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether it
raises an AttributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

11

The Python Library Reference, Release 3.2.2

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module.

hex (x)
Convert an integer number to a hexadecimal string. The result is a valid Python expression. If x is not a Python
int object, it has to define an ___index__ () method that returns an integer.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = input ('-——> ')
—-—> Monty Python’s Flying Circus
>>> 3

"Monty Python’s Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

int ([number I string[, base]])

Convert a number or string to an integer. If no arguments are given, return 0. If a number is given, return
number.__int__ (). Conversion of floating point numbers to integers truncates towards zero. A string
must be a base-radix integer literal optionally preceded by ‘+’ or ‘-* (with no space in between) and optionally
surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with ‘a’ to ‘z’ (or ‘A’ to ‘Z’) having
values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals can be
optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base O means to interpret
exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int (' 010’ , 0) is not legal,
while int (010’) is,as wellas int (010", 8).

The integer type is described in Numeric Types — int, float, complex.

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct or indirect) subclass
thereof. If object is not an object of the given type, the function always returns false. If classinfo is not a class
(type object), it may be a tuple of type objects, or may recursively contain other such tuples (other sequence
types are not accepted). If classinfo is not a type or tuple of types and such tuples, a TypeError exception is
raised.

issubclass (class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other
case, a TypeError exception is raised.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.2

iter (object[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ () method
with integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then object must be a callable object. The iterator created in this case
will call object with no arguments for each call to its __next___ () method; if the value returned is equal to
sentinel, St opIteration will be raised, otherwise the value will be returned.

One useful application of the second form of itexr () istoread lines of a file until a certain line is reached. The
following example reads a file until the readl ine () method returns an empty string:

with open ('mydata.txt’) as fp:
for line in iter (fp.readline, ’7):
process_line(line)

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list ([iterable])
Return a list whose items are the same and in the same order as iterable‘s items. iterable may be either a
sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and
returned, similar to iterable[:]. Forinstance, 1ist (' abc’) returns ["a’, 'b’, ’'c’] and 1ist (
(1, 2, 3))returns [1, 2, 3].Ifnoargument is given, returns a new empty list, [].

1ist is a mutable sequence type, as documented in Sequence Types — str, bytes, bytearray, list, tuple, range.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iferable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables in
parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the
function inputs are already arranged into argument tuples, see itertools.starmap ().

max (ilerable[, args...], *[, key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0] and
heapg.nlargest (1, iterable, key=keyfunc).

memoryview (obj)
Return a “memory view” object created from the given argument. See memoryview type for more information.

min (iterable[, args...], *[, key])
With a single argument iterable, return the smallest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

13

The Python Library Reference, Release 3.2.2

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

If multiple items are minimal, the function returns the first one encountered. This is consis-
tent with other sort-stability preserving tools such as sorted(iterable, key=keyfunc) [0] and
heapg.nsmallest (1, iterable, key=keyfunc).

next (iterator[, default])
Retrieve the next item from the iterator by calling its __next___ () method. If default is given, it is returned if
the iterator is exhausted, otherwise St opIteration is raised.

object ()
Return a new featureless object. object is a base for all classes. It has the methods that are common to all
instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x)
Convert an integer number to an octal string. The result is a valid Python expression. If x is not a Python int
object, it has to define an ___index___ () method that returns an integer.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True)
Open file and return a corresponding stream. If the file cannot be opened, an TOError is raised.

file is either a string or bytes object giving the pathname (absolute or relative to the current working directory)
of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is
closed when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ’ r’ which means
open for reading in text mode. Other common values are ' w’ for writing (truncating the file if it already
exists), and * a’ for appending (which on some Unix systems, means that all writes append to the end of the file
regardless of the current seek position). In text mode, if encoding is not specified the encoding used is platform
dependent. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available

modes are:
Character | Meaning
s open for reading (default)
"w! open for writing, truncating the file first
ra’ open for writing, appending to the end of the file if it exists
"o’ binary mode
e text mode (default)
T4 open a disk file for updating (reading and writing)
"y’ universal newline mode (for backwards compatibility; should not be used in new code)

The default mode is ’ r’ (open for reading text, synonym of ’ rt’). For binary read-write access, the mode
"w+b’ opens and truncates the file to O bytes. ’ r+b’ opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including ' b’ in the mode argument) return contents as bytes objects without any decoding. In text mode
(the default, or when ’ t’ is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the the processing is
done by Python itself, and is therefore platform-independent.

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.2

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size of a
fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as follows:

*Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE. On
many systems, the buffer will typically be 4096 or 8192 bytes long.

*“Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use the
policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever 1ocale.getpreferredencoding () returns), but
any encoding supported by Python can be used. See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. Pass ' strict’ to raise a ValueError exception if there is an encoding error (the
default of None has the same effect), or pass ’ ignore’ to ignore errors. (Note that ignoring encoding errors
can lead to data loss.) ' replace’ causes a replacement marker (such as ’ ?’) to be inserted where there
is malformed data. When writing, ' xmlcharrefreplace’ (replace with the appropriate XML character
reference) or ' backslashreplace’ (replace with backslashed escape sequences) can be used. Any other
error handling name that has been registered with codecs.register_error () is also valid.

newline controls how universal newlines works (it only applies to text mode). It can be None, ”, " \n’, " \r’,
and " \r\n’. It works as follows:

*On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in ' \n’,
"\r’,or "\r\n’, and these are translated into ' \n’ before being returned to the caller. If it is ",
universal newline mode is enabled, but line endings are returned to the caller untranslated. If it has any of
the other legal values, input lines are only terminated by the given string, and the line ending is returned to
the caller untranslated.

*On output, if newline is None, any ’ \n’ characters written are translated to the system default line
separator, os . Linesep. If newline is ", no translation takes place. If newline is any of the other legal
values, any ’ \n’ characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be
kept open when the file is closed. If a filename is given closefd has no effect and must be True (the default).

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode (‘w’, "r’, "wt’, 'rt’, etc.), it returns a subclass of io.TextIOBase
(specifically io.TextIOWrapper). When used to open a file in a binary mode with buffering, the re-
turned class is a subclass of io.BufferedIOBase. The exact class varies: in read binary mode, it returns
a io.BufferedReader; in write binary and append binary modes, it returns a io.Bufferediiriter,
and in read/write mode, it returns a io.BufferedRandom. When buffering is disabled, the raw stream, a
subclass of io.RawIOBase, io.FileIO0, isreturned.

See also the file handling modules, such as, fileinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

ord (c)
Given a string representing one Uncicode character, return an integer representing the Unicode code point of
that character. For example, ord (’ a’) returns the integer 97 and ord (/ \u2020’) returns 8224. This is
the inverse of chr ().

On wide Unicode builds, if the argument length is not one, a TypeError will be raised. On narrow Unicode
builds, strings of length two are accepted when they form a UTF-16 surrogate pair.

pow (x,y[. z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than

15

The Python Library Reference, Release 3.2.2

pow (x, y) % z). The two-argument form pow (x, vy) isequivalent to using the power operator: x* xy.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10+ +2 returns 100, but 10 x-2 returns 0.01. If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print ([object,], * sep="", end="\n’, file=sys.stdout)

Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no object is given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None,
sys.stdout will be used.

property (fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C:
def = init__ (self):
self._x = None

def getx(self):
return self._x
def setx(self, wvalue):
self._x = value
def delx(self):
del self._x
X = property(getx, setx, delx, "I'm the ’'x’ property.")

If then c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x
the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def _ init_ (self):
self._voltage = 100000

@property

def voltage (self):
"""Get the current voltage."""
return self._voltage

turns the voltage () method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.2

class C:
def @ init__ (self):
self._x = None

@property

def x(self):
"""I’m the ’x’ property."""
return self._x

@x.setter
def x(self, value):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property also has the attributes fget, fset, and £del corresponding to the constructor argu-
ments.

range ([start], stop[, step])
This is a versatile function to create iterables yielding arithmetic progressions. It is most often used in for
loops. The arguments must be integers. If the step argument is omitted, it defaults to 1. If the start argument
is omitted, it defaults to 0. The full form returns an iterable of integers [start, start + step, start
+ 2 % step, ...].Ifstepis positive, the last element is the largest start + i1 * step less than stop;
if step is negative, the last element is the smallest start + i x step greater than sfop. step must not be
zero (or else ValueError is raised). Example:

>>> list (range (10))

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

(¢, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list (range(0))

>>> list (range (1, 0))

Range objects implement the collections.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices:

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)

>>> 11 in r

False

>>> 10 in r

17

The Python Library Reference, Release 3.2.2

True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Ranges containing absolute values larger than sy s . maxsize are permitted but some features (such as len ())
will raise OverflowError. Changed in version 3.2: Implement the Sequence ABC. Support slicing and
negative indices. Test integers for membership in constant time instead of iterating through all items.

repr (object)

Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what this
function returns for its instances by defininga ___repr__ () method.

reversed (seq)

Return a reverse iferator. seq must be an object which has a ___reversed__ () method or supports the
sequence protocol (the __len__ () method andthe __getitem__ () method with integer arguments starting
at 0).

round (x[, n])

Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to zero.
Delegates to x.__round__ (n).

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus n; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round (0.5) and round (-0.5) are 0, and round (1.5) is 2). The return value is an integer if called with
one argument, otherwise of the same type as x.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives2.67
instead of the expected 2. 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be
represented exactly as a float. See fut-fp-issues for more information.

set ([iterable])

Return a new set, optionally with elements taken from iterable. The set type is described in Ser Types — set,
frozenset.

setattr (object, name, value)

This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar = 123.

slice ([start], stop[, step])

Return a slice object representing the set of indices specified by range (start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, i]. See
itertools.islice () for an alternate version that returns an iterator.

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.2

sorted (iterable[, key][, reverse])
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () to convert an old-style cmp function to a key function.
For sorting examples and a brief sorting tutorial, see Sorting HowTo.

staticmethod (function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function for
details.

It can be called either on the class (such as C.f ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. Also see classmethod () for a variant
that is useful for creating alternate class constructors.

For more information on static methods, consult the documentation on the standard type hierarchy in types.

str ([object[, encoding[, errors]]])
Return a string version of an object, using one of the following modes:

If encoding and/or errors are given, st r () will decode the object which can either be a byte string or a character
buffer using the codec for encoding. The encoding parameter is a string giving the name of an encoding; if the
encoding is not known, LookupError is raised. Error handling is done according to errors; this specifies
the treatment of characters which are invalid in the input encoding. If errors is " strict’ (the default), a
ValueError is raised on errors, while a value of " ignore’ causes errors to be silently ignored, and a
value of ' replace’ causes the official Unicode replacement character, U+FFFD, to be used to replace input
characters which cannot be decoded. See also the codecs module.

When only object is given, this returns its nicely printable representation. For strings, this is the string itself.
The difference with repr (object) isthat str (object) does not always attempt to return a string that is
acceptable to eval ();its goal is to return a printable string. With no arguments, this returns the empty string.

Objects can specify what st r (object) returns by defininga ___str__ () special method.

For more information on strings see Sequence Types — str, bytes, bytearray, list, tuple, range which describes
sequence functionality (strings are sequences), and also the string-specific methods described in the String
Methods section. To output formatted strings, see the String Formatting section. In addition see the String
Services section.

sum (iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The iterable‘s
items are normally numbers, and the start value is not allowed to be a string.

19

http://wiki.python.org/moin/HowTo/Sorting/

The Python Library Reference, Release 3.2.2

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ” . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using itertools.chain ().

super ([type[, Object-or-type]])
Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for accessing
inherited methods that have been overridden in a class. The search order is same as that used by getattr ()
except that the type itself is skipped.

The __mro___ attribute of the type lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an ob-
ject, isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single
inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement
the same method. Good design dictates that this method have the same calling signature in every case (because
the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and
because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arqg):
super () .method (arg) # This does the same thing as:

super (C, self).method(arqg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such as
super () .__getitem__ (name). It does so by implementing its own __getattribute__ () method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that super () is not limited to use inside methods. The two argument form specifies the arguments
exactly and makes the appropriate references. The zero argument form automatically searches the stack frame
for the class (__class__) and the first argument.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

tuple ([iterable])
Return a tuple whose items are the same and in the same order as iferable‘s items. iterable may be a sequence, a
container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned unchanged. For
instance, tuple (’ abc’) returns (‘a’, ’'b’, ’'c’) andtuple([1, 2, 3]) returns (1, 2, 3).If
no argument is given, returns a new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, bytes, bytearray, list, tuple,
range.

type (object)
Return the type of an object. The return value is a type object and generally the same object as returned by
object.__class__.

The isinstance () built-in function is recommended for testing the type of an object, because it takes sub-
classes into account.

20 Chapter 2. Built-in Functions

http://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.2.2

With three arguments, type () functions as a constructor as detailed below.

type (name, bases, dict)
Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the __name___ attribute; the bases tuple itemizes the base classes and becomes
the _ bases___ attribute; and the dict dictionary is the namespace containing definitions for class body and
becomes the ___dict___ attribute. For example, the following two statements create identical t ype objects:

>>> class X:
a =1

>>> X = type('X’, (object,), dict(a=1))

vars ([object])
Without an argument, act like 1ocals ().

With a module, class or class instance object as argument (or anything else that has a ___dict___ attribute),
return that attribute.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined. *

zip (*iterables)
Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences
or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument, it
returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(xiterables):
zip (’ABCD’, ’xy’) —-—-> Ax By
sentinel = object ()
iterables = [iter(it) for it in iterables]
while iterables:
result = []
for it in iterables:
elem = next (it, sentinel)
if elem is sentinel:
return
result.append(elem)
yield tuple(result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups using zip (x [iter (s)]1*n).

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched values
from the longer iterables. If those values are important, use itertools.zip_longest () instead.

z1ip () in conjunction with the x operator can be used to unzip a list:
>>> x = [1, 2, 3]

>>>y = [4, 5, 6]
>>> zipped = zip(x, V)

2 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

21

The Python Library Reference, Release 3.2.2

>>> list (zipped)

[(1, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(xzip(x, y))

>>> x == list(x2) and y == list (y2)
True

__import___ (name, globals={}, localsz{},fromlistz[], level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike
importlib.import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui 1t ins module and
assigningtobuiltins.___import__)in order to change semantics of the import statement, but nowadays
it is usually simpler to use import hooks (see PEP 302). Direct use of __import__ () israre, except in cases
where you want to import a module whose name is only known at runtime.

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at all,
and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. O (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the module
calling __import__ ().

When the name variable is of the form package .module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:
spam = __import__ (’spam’, globals (), locals(), [1, 0)

The statement import spam.ham results in this call:

spam = __import__ (/spam.ham’, globals(), locals(), [1, 0)

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ (’spam.ham’, globals (), locals(), [’'eggs’, ’"sausage’], 0)
eggs = _temp.eggs

saus = _temp.sausage

Here, the spam.ham module is returned from __import__ (). From this object, the names to import are

retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use
importlib.import_module ().

22

Chapter 2. Built-in Functions

http://www.python.org/dev/peps/pep-0302

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of types.NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq__ (), __1t__ (), and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
The same as Special value used mostly in conjunction with extended slicing syntax for user-defined
container data types.

__debug___
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be
used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemExit with the specified exit code.

copyright
license

23

The Python Library Reference, Release 3.2.2

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

24 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested for
truth value, and converted to a string (with the repr () function or the slightly different st r () function). The latter
function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or while condition or as operand of the Boolean operations
below. The following values are considered false:

* None

e False

* zero of any numeric type, for example, 0, 0.0, 07.
* any empty sequence, for example, ”, (), [].

¢ any empty mapping, for example, { }.

¢ instances of user-defined classes, if the class defines a __ _bool__ () or __len__ () method, when that
method returns the integer zero or bool value False.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

! Additional information on these special methods may be found in the Python Reference Manual (customization).

25

The Python Library Reference, Release 3.2.2

Operation Result Notes

X Or y if x is false, then y, else x (1)

x and y if x is false, then x, else y 2)

not x if x is false, then True, else False | (3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.
2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has alower priority than non-Boolean operators, so not a == b isinterpreted as not (a == b),and
a == not b isasyntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x < y
and y <= gz, except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for example,
function objects) support only a degenerate notion of comparison where any two objects of that type are unequal. The
<, <=, > and >= operators will raise a TypeError exception when comparing a complex number with another built-
in numeric type, when the objects are of different types that cannot be compared, or in other cases where there is no
defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eqg___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (), __le_ (), __gt__ (),and __ge__ () (in general,
__1t__ () and__eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects and
never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types (below).

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using
double in C; information about the precision and internal representation of floating point numbers for the machine
on which your program is running is available in sys.float_info. Complex numbers have a real and imaginary

26 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.2

part, which are each a floating point number. To extract these parts from a complex number z, use z.real and
z .imag. (The standard library includes additional numeric types, fractions that hold rationals, and decimal
that hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending ’ 5’ or / J’ to a numeric literal yields an imaginary number (a complex
number with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary
parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,
which is narrower than complex. Comparisons between numbers of mixed type use the same rule. > The constructors
int (), float (), and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in the
same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes | Full
documentation
X +y sum of x and y
X -y difference of x and y
X *x Y product of x and y
x /vy quotient of x and y
x //y floored quotient of x and y @))
X %y remainder of x / y 2)
-X X negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)(6) | int ()
float (x) x converted to floating point @)(6) | float ()
complex (re, a complex number with real part re, imaginary part im. im (6) complex ()
im) defaults to zero.
c.conjugate () | conjugate of the complex number ¢
divmod (x, V) the pair (x // y, x % V) 2) divmod ()
pow (x, V) x to the power y (5 pow ()
X *%x Y X to the power y 5
Notes:

1. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2is 0, (-1) //2is-1,1//(=2) is
-1,and (-1)//(-2) is 0.

2. Not for complex numbers. Instead convert to floats using abs () if appropriate.

3. Conversion from floating point to integer may round or truncate as in C; see functions f1oor () and ceil ()
in the math module for well-defined conversions.

4. float also accepts the strings “nan” and “inf”” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

5. Python defines pow (0, 0) and 0 =% O to be 1, as is common for programming languages.

6. The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the Nd
property).

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 27

The Python Library Reference, Release 3.2.2

See http://www.unicode.org/Public/6.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

All numbers.Real types (int and £1loat) also include the following operations:

Operation Result Notes
math.trunc(x) | xtruncated to Integral

round (x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to O.
math.floor (x) | the greatest integral float <= x

math.ceil (x) the least integral float >= x

For additional numeric operations see the math and cmath modules.

4.4.1 Bit-string Operations on Integer Types
Integers support additional operations that make sense only for bit-strings. Negative numbers are treated as their 2’s
complement value (this assumes a sufficiently large number of bits that no overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation Result Notes
x |y bitwise or of x and y
x Ny bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n x shifted left by n bits (H©2)
X >> n x shifted right by n bits (HA3)
~X the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.
2. A left shift by #n bits is equivalent to multiplication by pow (2, n) without overflow check.

3. A right shift by n bits is equivalent to division by pow (2, n) without overflow check.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers . Integral abstract base class. In addition, it provides one more method:

int.bit_length ()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin(n)
’-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x . bit_length () is the unique positive integer k such that 2+ (k-1)
<= abs (x) < 2xxk. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm,
thenk = 1 + int (log(abs(x), 2)).If xiszero,thenx.bit_length () returns 0.

Equivalent to:

28 Chapter 4. Built-in Types

http://www.unicode.org/Public/6.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.2.2

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> ’-0b100101’
s = s.lstrip(’'-0b’) # remove leading zeros and minus sign
return len(s) # len(’71001017) ——> 6

New in version 3.1.

int.to_bytes (length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big’)

b’ \x04\x00"

>>> (1024) .to_bytes (10, byteorder='big’)

b’ \x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='"big’, signed=True)

b/ \xfA\XFA\XEA\XEF\XEL\XEF\XEL\XEF\xfc\x00’

>>> x = 1000

>>> x.to_bytes ((x.bit_length() // 8) + 1, byteorder=’little’)
b’ \xe8\x03"

The integer is represented using length bytes. An OverflowError is raised if the integer is not representable
with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most significant byte is at
the end of the byte array. To request the native byte order of the host system, use sy s .byteorder as the byte
order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised. The default value for signed is False. New in
version 3.2.

classmethod int . from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes (b’ \x00\x10’, byteorder="big’)

16

>>> int.from_bytes (b’ \x00\x10’, byteorder=’'1little’)

4096

>>> int.from_bytes (b’ \xfc\x00’, byteorder="big’, signed=True)
-1024

>>> int.from_bytes (b’ \xfc\x00’, byteorder='big’, signed=False)
64512

>>> int.from _bytes ([255, 0, 0], byteorder="big’)

16711680

The argument bytes must either support the buffer protocol or be an iterable producing bytes. bytes and
bytearray are examples of built-in objects that support the buffer protocol.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1itt1le", the most significant byte is at
the end of the byte array. To request the native byte order of the host system, use sys.byteorder as the byte
order value.

The signed argument indicates whether two’s complement is used to represent the integer. New in version 3.2.

4.4. Numeric Types — int, float, complex 29

The Python Library Reference, Release 3.2.2

4.4.3 Additional Methods on Float

The float type implements the numbers.Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).1is_integer ()
True
>>> (3.2).1is_integer ()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float .hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

classmethod f1oat . fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing
whitespace.

Note that f1oat .hex () is an instance method, while f1oat . fromhex () is a class method.
A hexadecimal string takes the form:
[sign] [’'0x’] integer [’ .’ fraction] [’p’ exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of £1oat .hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by float . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3
+ 10./16 + 7./16%%x2) % 2.0xx10,0r 3740.0:

>>> float.fromhex (' 0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
"0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and vy, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== vy (see the __hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.2

Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational num-
ber, and hence applies to all instances of int and fraction.Fraction, and all finite instances of f1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P
is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedis P = 2xx31 - 1 on machines with 32-bit C longs
andP = 2x+61 - 1 onmachines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash (x) as m =*
invmod (n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no in-
verse modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value
sys.hash_info.inf.

e If x = m / nis a negative rational number define hash (x) as ~hash (-x). If the resulting hash is -1,
replace it with —2.

e The particular values sys.hash_info.inf, —sys.hash_info.inf and sys.hash_info.nan are
used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have the
same hash value.)

e For a complex number z, the hash values of the real and imaginary parts are combined by
computing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo
2+«xsys.hash_info.width so that it lies in range (-2*+* (sys.hash_info.width - 1),
2x% (sys.hash_info.width - 1)). Again, if the result is —1, it’s replaced with —2.

To clarify the above rules, here’s some example Python code, equivalent to the builtin hash, for computing the hash of
a rational number, f1oat, or complex:

import sys, math

def hash_fraction(m, n):
""r"Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mmn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
while m $ P == n % == 0:
m, n=m// P, n// P
ifn %P == 0:
hash_ = s
else:
Fermat’s Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

ys.hash_info.inf

hash_ = (abs(m) % P) % pow(n, P - 2, P) % P
if m < O:

hash_ = -hash_
if hash_ == -1:

hash_ = -2

return hash_

4.4. Numeric Types — int, float, complex 31

The Python Library Reference, Release 3.2.2

def hash_float (x):
"""Compute the hash of a float x."""

if math.isnan (x) :

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*xx.as_integer_ratio())

def hash_complex(z) :
"""Compute the hash of a complex number z."""

hash_ = hash_float(z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2+*+*sys.hash_info.width
M = 2x%(sys.hash_info.width - 1)
hash. = (hash_ & (M - 1)) — (hash & M)
if hash_ == -1:
hash_ == -2
return hash_

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

container._ _iter_ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter_ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APL

iterator._ _next_ ()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s __next__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.2

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__ ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter_ () and __next__ () methods. More information about generators can be found in the
documentation for the yield expression.

4.6 Sequence Types — str, bytes, bytearray, list, tuple, range

There are six sequence types: strings, byte sequences (bytes objects), byte arrays (bytearray objects), lists,
tuples, and range objects. For other containers see the built in dict and set classes, and the collections
module.

Strings contain Unicode characters. Their literals are written in single or double quotes: ’ xyzzy’, "frobozz".
See strings for more about string literals. In addition to the functionality described here, there are also string-specific
methods described in the String Methods section.

Bytes and bytearray objects contain single bytes — the former is immutable while the latter is a mutable sequence.
Bytes objects can be constructed the constructor, bytes (), and from literals; use a b prefix with normal string
syntax: b’ xyzzy’ . To construct byte arrays, use the bytearray () function.

While string objects are sequences of characters (represented by strings of length 1), bytes and bytearray objects
are sequences of integers (between 0 and 255), representing the ASCII value of single bytes. That means that for
a bytes or bytearray object b, b [0] will be an integer, while b [0:1] will be a bytes or bytearray object of length
1. The representation of bytes objects uses the literal format (b’ . ..’) since it is generally more useful than e.g.
bytes ([50, 19, 1001]). You can always convert a bytes object into a list of integers using 1ist (b).

Also, while in previous Python versions, byte strings and Unicode strings could be exchanged for each other rather
freely (barring encoding issues), strings and bytes are now completely separate concepts. There’s no implicit en-
/decoding if you pass an object of the wrong type. A string always compares unequal to a bytes or bytearray object.

Lists are constructed with square brackets, separating items with commas: [a, b, c]. Tuples are constructed by
the comma operator (not within square brackets), with or without enclosing parentheses, but an empty tuple must have
the enclosing parentheses, suchas a, b, cor (). A single item tuple must have a trailing comma, such as (d,).

Objects of type range are created using the range () function. They don’t support concatenation or repetition, and
using min () ormax () on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities as
the comparison operations. The + and * operations have the same priority as the corresponding numeric operations.
Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the table, s and ¢ are sequences of the same type; i, i, j and k are integers.

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 33

The Python Library Reference, Release 3.2.2

Operation Result Notes
X in s True if an item of s is equal to x, else False | (1)

x not in s False if an item of s is equal to x, else True | (1)

s + t the concatenation of s and ¢ (6)

s = n, n * s | nshallow copies of s concatenated 2)
s[i] i‘th item of s, origin 0 3)
s[i:3] slice of s from i to j 3)4)
s[i:j:k] slice of s from i to j with step k 3)(5)
len (s) length of s

min(s) smallest item of s

max (s) largest item of s

s.index (1) index of the first occurence of i in s

s.count (1) total number of occurences of i in s

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by comparing
corresponding elements. This means that to compare equal, every element must compare equal and the two sequences
must be of the same type and have the same length. (For full details see comparisons in the language reference.)

Notes:
1. When s is a string object, the in and not in operations act like a substring test.

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also that
the copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

>>> lists = [[]] = 3
>>> lists

(er, 1, 11

>>> 1lists[0].append(3)
>>> lists

(31, [31, [3]]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
x 3 are (pointers to) this single empty list. Modifying any of the elements of 1ists modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)

>>> lists[1l].append(5)

>>> lists([2].append(7)

>>> lists

(31, 51, (711

3. If i orj is negative, the index is relative to the end of the string: len (s) + 1orlen(s) + jissubstituted.
But note that —0 is still O.

4. The slice of s from i to j is defined as the sequence of items with index k such that i <= k < Jj. Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If i
is greater than or equal to j, the slice is empty.

5. The slice of s from i to j with step & is defined as the sequence of items with index x = i + nxk such that
0 <= n < (j-1i) /k. In other words, the indices are i, i +k, 1+2+xk, 1+3+k and so on, stopping when j is
reached (but never including j). If i or j is greater than len (s), use len (s). If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is
treated like 1.

6. CPython implementation detail: If s and ¢ are both strings, some Python implementations such as CPython
can usually perform an in-place optimization for assignments of the foom s = s + t or s += t. When
applicable, this optimization makes quadratic run-time much less likely. This optimization is both version and

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.2

implementation dependent. For performance sensitive code, it is preferable to use the str. join () method
which assures consistent linear concatenation performance across versions and implementations.

4.6.1 String Methods

String objects support the methods listed below.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str, bytes, bytear-
ray, list, tuple, range section. To output formatted strings, see the String Formatting section. Also, see the re module
for string functions based on regular expressions.

str.capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

str.center (width[,ﬁllchar])
Return centered in a string of length widrh. Padding is done using the specified fillchar (default is a space).

str.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

str.encode (encoding="utf-8”, errors="strict”)
Return an encoded version of the string as a bytes object. Default encoding is ' ut £-8". errors may be given
to set a different error handling scheme. The default for errors is ’ strict’, meaning that encoding errors
raise a UnicodeError. Other possible values are * ignore’, ' replace’, ' xmlcharrefreplace’,
"backslashreplace’ and any other name registered via codecs.register_error (), see section
Codec Base Classes. For a list of possible encodings, see section Standard Encodings. Changed in version 3.1:
Support for keyword arguments added.

str.endswith (suﬁ‘ix[, smrt[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs ([tabsize])
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current
column and the given tab size. The column number is reset to zero after each newline occurring in the string. If
tabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other non-printing characters
Or escape sequences.

str.find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the slice
s[start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> Py’ in ’Python’
True

str.format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a posi-
tional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field
is replaced with the string value of the corresponding argument.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 35

The Python Library Reference, Release 3.2.2

str.

str.

str.

str

str.

str

str.

str.

str.

str.

>>> "The sum of 1 + 2 1is {0}".format (1+2)
"The sum of 1 + 2 1is 3’

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

format_map (mapping)
Similar to str.format (x*mapping), except that mapping is used directly and not copied to a dict .
This is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):
return key

>>> / {name} was born in {country}’.format_map (Default (name=’'Guido’))
"Guido was born in country’

New in version 3.2.

index (sub[, start[, end]])
Like find (), but raise ValueError when the substring is not found.

isalnum()

Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
A character ¢ is alphanumeric if one of the following returns True: c.isalpha(), c.isdecimal (),
c.isdigit (),orc.isnumeric().

.isalpha()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those with
general category property being one of “Lm”, “Lt”, “Lu”, “LI”, or “Lo”. Note that this is different from the
“Alphabetic” property defined in the Unicode Standard.

isdecimal ()

Return true if all characters in the string are decimal characters and there is at least one character, false otherwise.
Decimal characters are those from general category “Nd”. This category includes digit characters, and all
characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC DIGIT ZERO.

.isdigit ()

Return true if all characters in the string are digits and there is at least one character, false otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

isidentifier ()
Return true if the string is a valid identifier according to the language definition, section identifiers.

islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise. Cased characters are those with general category property being one of “Lu”, “LI1”, or “Lt” and
lowercase characters are those with general category property “LI1”.

isnumeric()

Return true if all characters in the string are numeric characters, and there is at least one character, false oth-
erwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable ()
Return true if all characters in the string are printable or the string is empty, false otherwise. Nonprintable

36

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.2

str

str

str

str

str

str

str

characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repr () is invoked on a string. It has no bearing on the handling of strings
written to sys.stdout or sys.stderr.)

.isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.
Whitespace characters are those characters defined in the Unicode character database as “Other” or “Separator”
and those with bidirectional property being one of “WS”, “B”, or “S”.

.istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.
.isupper ()

Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise. Cased characters are those with general category property being one of “Lu”, “LI”, or “Lt” and
uppercase characters are those with general category property “Lu”.

. join (iterable)
Return a string which is the concatenation of the strings in the iterable iterable. A TypeError will be raised
if there are any non-string values in seq, including bytes objects. The separator between elements is the string
providing this method.

.1ljust (width[,ﬁllchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is
a space). The original string is returned if width is less than 1len (s) .

.lower ()
Return a copy of the string converted to lowercase.

.1strip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> 7 spacious " .lstrip()

" spacious !

>>> 'www.example.com’ .1lstrip (/ cmowz.’)
"example.com’

static st r .maketrans (x[, y[, Z]])

str

str

This static method returns a translation table usable for str.translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted to
ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

.partition (sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

.replace (old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count

4.6.

Sequence Types — str, bytes, bytearray, list, tuple, range 37

The Python Library Reference, Release 3.2.2

str

str

str

str.

str.

str.

str

str.

str

is given, only the first count occurrences are replaced.

.rfind (sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on fail-
ure.

.rindex (sub[, start[, end]])

Like rfind () butraises ValueError when the substring sub is not found.

.rjust (width, fillchar |)

Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than len (s).

rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

rsplit ([sep[, maxsplit]])

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below.

rstrip ([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> spacious ".rstrip()

! spacious’

>>> 'mississippi’ .rstrip(’ipz’)
‘mississ’

.split ([sep[, maxsplit]])

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified, then there
is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, ' 1,2’ .split (’,’) returns [*1’, ", ' 2'1]). The sep argument may consist of multiple char-
acters (for example, ' 1<>2<>3’ .split (' <>') returns ["1’, ’'2’, ’3’1). Splitting an empty string
with a specified separator returns [”].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

Forexample,” 1 2 3 ’.split () returns ["1’, '2’, '3’],and’ 1 2 3 ’.split (None, 1)
returns [717, "2 3 '].

splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

.startswith (preﬁx[, start[, end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to

38

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.2

look for. With optional start, test string beginning at that position. With optional end, stop comparing string at
that position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious " .strip ()

" spacious’

>>> 'www.example.com’ .strip (/' cmowz.’)
"example’

str.swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the remaining char-
acters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they’re bill’s friends from the UK".title()
"They’Re Bill’S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za-z]+
lambda mo: mo.group (0) [
mo.group (0) [

)?"I
0] .upper () +
1:].1lower (),
s)

>>> titlecase("they’re bill’s friends.")
"They’re Bill’s Friends."

str.translate (map)
Return a copy of the s where all characters have been mapped through the map which must be a dictionary
of Unicode ordinals (integers) to Unicode ordinals, strings or None. Unmapped characters are left untouched.
Characters mapped to None are deleted.

Youcanuse str.maketrans () to create a translation map from character-to-character mappings in different
formats.

Note: An even more flexible approach is to create a custom character mapping codec using the codecs
module (see encodings.cpl251 for an example).

str.upper ()
Return a copy of the string converted to uppercase.

str.z£ill (width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly.
The original string is returned if width is less than len (s).

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 39

The Python Library Reference, Release 3.2.2

4.6.2 Old String Formatting Operations

Note: The formatting operations described here are obsolete and may go away in future versions of Python. Use the
new String Formatting in new code.

String objects have one unique built-in operation: the $ operator (modulo). This is also known as the string formatting
or interpolation operator. Given format % values (where format is a string), $ conversion specifications in
format are replaced with zero or more elements of values. The effect is similar to the using sprintf () in the C
language.

If format requires a single argument, values may be a single non-tuple object. * Otherwise, values must be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The ’ %’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an * =’ (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), givenasa ’ .’ (dot) followed by the precision. If specified as ’ =’ (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a paren-
thesised mapping key into that dictionary inserted immediately after the * $’ character. The mapping key selects the
value to be formatted from the mapping. For example:

>>> print (' $ (language)s has % (number)(03d quote types.’ %
{’ language’ : "Python", "number": 21})

Python has 002 quote types.
In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning

r#7 The value conversion will use the “alternate form” (where defined below).

"o’ The conversion will be zero padded for numeric values.

r—r The converted value is left adjusted (overrides the / 0’ conversion if both are given).

ro (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
r4r A sign character (“ +’ or ’ -) will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to %d.

The conversion types are:

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

40 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.2

Conver- | Meaning Notes

sion

rd’ Signed integer decimal.

rir Signed integer decimal.

"o’ Signed octal value. (1)

ru’ Obsolete type — it is identical to " d’ . @)

rx! Signed hexadecimal (lowercase). 2)

rxX’ Signed hexadecimal (uppercase). 2)

re’ Floating point exponential format (lowercase). 3)

"E’ Floating point exponential format (uppercase). 3)

i Floating point decimal format. 3)

"E’ Floating point decimal format. 3)

rg’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not (@)
less than precision, decimal format otherwise.

"G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not “)
less than precision, decimal format otherwise.

el Single character (accepts integer or single character string).

"¢’ String (converts any Python object using repr ()).)

"s’ String (converts any Python object using st r ()). 5)

ra’ String (converts any Python object using ascii ()). 5)

T No argument is converted, results in a * $’ character in the result.

Notes:

1. The alternate form causes a leading zero (* 0') to be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

2. The alternate form causes a leading ’ Ox’ or ’ 0X’ (depending on whether the ’ x’ or ’ X’ format was used)
to be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
5. If precision is N, the output is truncated to N characters.
7. See PEP 237.

Since Python strings have an explicit length, s conversions do not assume that / \ 0" is the end of the string. Changed
in version 3.1: % £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g conver-
sions. Additional string operations are defined in standard modules st ring and re.

4.6.3 Range Type
The range type is an immutable sequence which is commonly used for looping. The advantage of the range type
is that an range object will always take the same amount of memory, no matter the size of the range it represents.

Range objects have relatively little behavior: they support indexing, contains, iteration, the 1en () function, and the
following methods:

range.count (x)
Return the number of i‘s for which s[1i] == x.

New in version 3.2.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 41

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.2.2

range.index (x)

4.6

List

Return the smallest i such that s [1] == x. Raises ValueError when x is not in the range.

New in version 3.2.

.4 Mutable Sequence Types

and bytearray objects support additional operations that allow in-place modification of the object. Other mutable

sequence types (when added to the language) should also support these operations. Strings and tuples are immutable
sequence types: such objects cannot be modified once created. The following operations are defined on mutable
sequence types (where x is an arbitrary object).

Note that while lists allow their items to be of any type, bytearray object “items” are all integers in the range 0 <=x <

256.
Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:3] = ¢t slice of s from i to j is replaced by the contents of the iterable ¢
del s[i:7j] sameass[i:3] = []
s[i:j:k] =t the elements of s [i: j:k] are replaced by those of ¢ €))
del s[i:7j:k] removes the elements of s [1:j:k] from the list
s.append (x) sameas s[len(s) :len(s)] = [x]
s.extend (x) same as s[len(s) :len(s)] = x 2)
s.count (x) return number of i‘s for which s [1] == x
s.index (x[, 1[, 3J11) return smallest k such that s [k] == xandi <= k < j 3)
s.insert (1, Xx) sameas s[1:1] = [x] (@)
s.pop([il) sameasx = s[i]; del s[i]; return x (@)
S.remove (x) same as del s[s.index (x)] 3)
s.reverse () reverses the items of s in place (6)
s.sort ([key[, reverse]]) | sortthe items of s in place 6), (7), (8)
Notes:
1. ¢ must have the same length as the slice it is replacing.

2.
3.

x can be any iterable object.

Raises ValueError when x is not found in s. When a negative index is passed as the second or third parameter
to the index () method, the sequence length is added, as for slice indices. If it is still negative, it is truncated
to zero, as for slice indices.

When a negative index is passed as the first parameter to the insert () method, the sequence length is added,
as for slice indices. If it is still negative, it is truncated to zero, as for slice indices.

The optional argument i defaults to —1, so that by default the last item is removed and returned.

The sort () and reverse () methods modify the sequence in place for economy of space when sorting
or reversing a large sequence. To remind you that they operate by side effect, they don’t return the sorted or
reversed sequence.

The sort () method takes optional arguments for controlling the comparisons. Each must be specified as a
keyword argument.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None. Use functools.cmp_to_key () to convert an old-style
cmp function to a key function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

42

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.2

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative order
of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by department,
then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even inspect,
the list is undefined. The C implementation of Python makes the list appear empty for the duration, and raises
ValueError if it can detect that the list has been mutated during a sort.

8. sort () is not supported by bytearray objects.

4.6.5 Bytes and Byte Array Methods

Bytes and bytearray objects, being “strings of bytes”, have all methods found on strings, with the exception of
encode (), format () and isidentifier (), which do not make sense with these types. For converting the
objects to strings, they have a decode () method.

Wherever one of these methods needs to interpret the bytes as characters (e.g. the is. .. () methods), the ASCII
character set is assumed.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write

a = "abc"
b = a.replace("a", "f")

a = b"abc"
b = a.replace(b"a", b"f")

bytes.decode (encoding="utf-8”, errors="strict”)

bytearray.decode (encoding="utf-8”, errors="strict”)
Return a string decoded from the given bytes. Default encoding is " ut£—-8’. errors may be given to set
a different error handling scheme. The default for errors is ’ strict’, meaning that encoding errors raise
a UnicodeError. Other possible values are ' ignore’, ' replace’ and any other name registered via
codecs.register_error (), see section Codec Base Classes. For alist of possible encodings, see section
Standard Encodings. Changed in version 3.1: Added support for keyword arguments.

The bytes and bytearray types have an additional class method:

classmethod bytes . fromhex (string)

classmethod bytearray . fromhex (string)
This bytes class method returns a bytes or bytearray object, decoding the given string object. The string must
contain two hexadecimal digits per byte, spaces are ignored.

>>> bytes.fromhex (' £f0 f1£f2)
b’ \xfO\xfl\xf2’

The maketrans and translate methods differ in semantics from the versions available on strings:

bytes.translate (table[, delete])

bytearray.translate (table[, delete])
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes
object of length 256.

You can use the bytes.maketrans () method to create a translation table.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 43

The Python Library Reference, Release 3.2.2

Set the table argument to None for translations that only delete characters:

>>> b’read this short text’.translate (None, b’aeiou’)
b’rd ths shrt txt’

static bytes .maketrans (from, to)

static bytearray.maketrans (from, to)
This static method returns a translation table usable for bytes.translate () that will map each character
in from into the character at the same position in fo; from and fo must be bytes objects and have the same length.
New in version 3.1.

4.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, remov-
ing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. (For other containers see the builtin dict, 1ist, and tuple classes, and the collections
module.)

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {’ jack’, ’sJjoerd’},in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterable])

class frozenset ([iterable])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the cardinality of set s.

x in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their intersec-
tion is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

44 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.2

set < other
Test whether the set is a true subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a true superset of other, thatis, set >= other and set != other.

union (other, ...)
set | other |
Return a new set with elements from the set and all others.

intersection (other, ...)
set & other &
Return a new set with elements common to the set and all others.

difference (other,...)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set * other
Return a new set with elements in either the set or other but not both.

copy ()

Return a new set with a shallow copy of s.
Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any iter-

able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set (“abc’) & ’‘cbs’ in favor of the more readable
set ("abc’) .intersection (’cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if eve