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Abstract

In this paper we describe our experience from
porting GCC to the AMD64 architecture and
the AMD Opteron processor. Our target was a
high quality port producing fast code. We dis-
cuss decisions taken while designing the Ap-
plication Binary Interface (ABI) and effect of
various code optimizations we implemented.
We also present several open issues we would
like to solve in the future.

1 AMD64 Instruction Set
Overview

The AMD64 architecture [AMD64] is an ex-
tension of x86 instruction set to enable 64-bit
computing while remaining compatible with
existing x86 software. The CPU can operate
in 64-bit mode, where semantic of several x86
instructions has been changed. Most notably:

• Single byte encoding ofinc anddec in-
structions is no longer available. Instead
the opcodes are used to encode a new pre-
fix REXwith four one-bit arguments. First
argument is used to overwrite instruction
operand size into 64 bits. Other three are
used to increase amount of general pur-
pose registers from 8 to 16.

• New 64-bit addressing mode is used by
default. Prefix is available to overwrite
into 32-bit addressing when needed.

• One of multiple possible encodings of di-
rect addressing has been changed into in-
struction pointer relative addressing. In-
struction pointer relative addressing is
now one byte shorter than direct address-
ing.

• Default operand size remains 32-bit, how-
ever stack manipulation instructions, such
as push and pop defaults to 64-bit
operand size.

• The immediate operands of instructions
has not been extended to 64 bits to keep
instruction size smaller, instead they re-
main 32-bit sign extended. Addition-
ally the movabs instruction to load ar-
bitrary 64-bit constant into register and
to load/store integer register from/to arbi-
trary constant 64-bit address is available.

• Several new instructions have been added
to allow 64-bit conversions of data types.

Unlike earlier 64-bit architectures GCC has
been ported to, some AMD64 features are
unique, such as CISC instruction set, gener-
ally usable IP relative addressing, partial sup-
port for 64-bit immediate operands and more.

2 Application Binary Interface

Since GCC has been one of the first compil-
ers ported to the platform, we had a chance to
design the processor specific part of the appli-
cation binary interface [AMD64-PSABI] from
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scratch. In this section we discuss the deci-
sions we made and rationale behind them. We
also discuss the GCC implementation, as well
as problems we encountered while porting the
software.

Majority of [AMD64-PSABI] has been de-
signed in the early stages of development with
just preliminary implementation of AMD64
support in GCC and no hardware nor simulator
available. Thus we had just limited possibili-
ties for experiments and most of our decisions
has been verified by measuring of executable
files sizes and number of instructions in them.

We never made serious study on how these re-
late to the performance, but it may be expected
that the relation is pretty direct in the cases we
were interested in.

2.1 Fundamental Types

We do use 64-bit pointers andlong . The type
int is 32-bit. This scheme is known as LP64
model and is used by all 64-bit UNIX ports we
are aware of.

64-bit pointers bring expansion of the data-
structures and increase memory consumption
of the applications. A number of 64-bit UNIX
ports also specify a code model with 32-bit
pointers, LP32. Because of large maintenance
cost of extra model (change of pointer size re-
quires kernel emulation layer and brings fur-
ther difficulties) and because of support for
native 32-bit applications we decided to con-
centrate on LP64 support first and implement
LP32 later only if necessary. See also Section
4.1 for some further discussion.

We considered thelong long type to be
128-bit, since AMD64 has limited support for
128-bit arithmetics (that comes from extending
support for 32-bit arithmetic in 16-bit 8086),
however there are many programs that do ex-
pectlong long to be exactly 64-bit, thus we

specify optional__int128 instead. At the
moment no library functions to deal with the
type are specified so it’s usage in C environ-
ment may be uncomfortable. This is something
we may consider to address in future extension
of the ABI document.

The size oflong double is 128 bits with
only first 80 bits used to match native x87 for-
mat. The rest is just padding to keep long
double values 128-bit aligned so loads and
stores are effective. The padding is unde-
fined that may bring problems when one is us-
ing memcmpto test for equality of twolong
double values.

Additionally we specify__m64 and__m128
types for SIMD operations.

All types do have natural alignment.
([i386-ABI] limits the alignment to 32-bit
that brings serve performance problems when
dealing with double , long double ,
__m64 and__m128 types on modern CPU.)
It is allowed to access misaligned data of all
types with the exception of__m128, since
CPU traps on misaligned 128-bit memory
accesses.

GCC Implementation

Our GCC implementation does support
all specified types with the exception of
__float128 . At the moment GCC is
not ready to support two extended floating
point formats having the same size and thus
implementing it would require considerable
effort.

The 128-bit arithmetics patterns are also
not implemented yet so code generated for
__int128 is suboptimal.
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Size Contents Frame

0–8n incoming arguments Previous
8 return address

0,8 previous%rbp value
0,8 padding

? local data Current
? register spill area

0–4 padding
0–48 register save area

0,8 padding
0,8 padding Allocated

0–8n outgoing arguments via push

Figure 1: Stack Frame

2.2 The Stack Frame

Unlike [i386-ABI] we do not enforce any spe-
cific organization of stack frames giving com-
piler maximal freedom to optimize function
prologues and epilogues. In order to allow
easy spilling of x87 and SSE registers we do
specify 128-bit stack alignment at the function
call boundary, thus function calls may need to
be padded by one extrapush since AMD64
instruction set naturally aligns stack to 64-bit
boundary only.

We additionally specify the red zone of
128 bytes below the stack pointer function can
use freely to save data without allocating the
stack frame as long as the data are not required
to survive function call.

The sample stack frame organization based on
extending the usual IA-32 coding practice to
64-bit is shown at Figure 1, the sample pro-
logue code is shown at Figure 2.

GCC Implementation

We found the use of frame pointer and
push /pop instructions to be common bottle-

push %rbp Save frame pointer
movq %rsp %rbp Initialize frame pointer
subq $48,%rsp Allocate stack frame
pushq %rbx Save non-volatile registers
pushq %r12 clobbered by function
pushq %r13
. . . Function body
popq %r13 Restore registers
popq %r12
popq %rbx
leave Restore%rbp

and deallocate stack
ret

Figure 2: Function Prologue and Epilogue

Size Contents Frame

0–8n incoming arguments Previous
8 return address

0,8 previous%rbp value
0–48 register save area

0,8 padding Current
0–96 va-arg registers

? local data
? register spill area

0–8 padding
0–8n outgoing arguments

Figure 3: Stack Frame in GCC

neck for the function call performance. The
AMD Opteron CPU can execute stores at the
rate of two per cycle, while it requires 2 cycles
to compute new%rsp value inpush andpop
operations so the sequence ofpush andpop
operations executes 4 times slower.

We reorganized the stack frame layout to al-
low shorter dependency chains in the prologues
and epilogues as shown on Figure 3. To save
and restore registers we commonly use the se-
quence ofmov instructions and we do allocate
whole stack frame, including outgoing argu-
ment area, using singlesub opcode as shown
in Figure 4. AMD Opteron processor executes
the prologue in 2 cycles, while the usual pro-
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movq %rbx ,-24(%rsp ) Save registers
movq %r12,-16(%rsp )
movq %r13,-8(%rsp )
subq $72,%rsp Allocate stack frame
. . . Function body
movq 48(%rsp ),%rbx Restore registers
movq 56(%rsp ),%r12
movq 64(%rsp ),%r13
addq $72,%rsp Deallocate stack frame
ret

Figure 4: GCC Generated Prologue and Epi-
logue

logue (Figure 2) requires 9 cycles. Similarly
for the epilogues.

Unfortunately the produced code is consider-
ably longer—the size ofpush instruction is
1 byte (2 bytes for extended register), while
the size ofmov is at least 5 bytes. In order
to reduce the expenses, GCC does use pro-
file information to use short sequences in the
cold function. Additionally it estimates num-
ber of instructions executed per one invocation
of function and use slow prologues and epi-
logues when it exceeds given threshold (20 in-
structions for each saved register).

We found heuristics choosing between fast
and short prologues difficult to tune—the pro-
logue/epilogue size is most expensive for small
functions where it also should be as fast as pos-
sible. As can be seen in the Table 7, the de-
scribed behavior results in about 1% speedup
at the1.1% code size growth (“prologues us-
ing moves” benchmark). Bypassing the heuris-
tics and using moves for all prologues results in
additional speedup of 1% and additional 1.1%
code size growth (“all prologues using moves”
benchmark). The heuristics works better with
profile feedback (Table 9). This is something
we should revisit in the future.

GCC does always eliminate the frame pointer
unless function contain dynamic stack alloca-

tion such asalloca call. This always result
in one extra general purpose register available
and fewer instructions executed.

Contrary to the instruction counts, eliminat-
ing of frame pointer may result in larger code,
because%rsp relative addressing encoding is
one byte longer than%rbp relative one. Thus
it may be profitable to not eliminate frame
pointer when function do contain many refer-
ences to the stack frame. Command line option
-fno-omit-frame-pointer can be used
to force use of frame pointer in all functions.

For 64-bit code generation omitting frame
pointer results in both smaller and faster code
on the average (Tables 7, 8, 9 and 10). In
the contrary, for 32-bit code generation it re-
sults in code size growth (Tables 11 and 12).
This is caused by the fact that increased regis-
ter file and register argument passing conven-
tions eliminated vast majority of stack frame
accesses produced by the 32-bit compiler.

In GCC stack frame layout the register save
area and local data are reordered to reduce
number of instruction whenpush instruc-
tions are used to save registers — the stack
frame and outgoing arguments area alloca-
tion/deallocation can be done at once using sin-
gle sub /add instruction. The disadvantage
is that leave can not be used to deallocate
stack frame in combination withpush and
pop instructions. In our benchmarks the new
approach brought noticeable speedups for 32-
bit code, however it is difficult to repeat the
benchmarks since the prologue/epilogue code
is dependent on the new stack frame organiza-
tion and would require some deeper changes to
work in the original scheme again.

At the moment GCC is just partly taking ad-
vantage of the red zone. We do use red zone
for leaf functions having data small enough to
fit in it and for saving some temporarily al-
located data in instruction generation (so the
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sub andadd instructions in Figure 4 would be
eliminated for leaf functions). For the benefit
of kernel programming (signal handlers must
take into account the red zone increasing stack
size requirements), option-fno-red-zone
is available to disable usage of red zone en-
tirely.

As can be seen in the Tables 7 and 8, red
zone results in slight code size decrease and
speedups. The effect depends on how many
leaf functions require stack frame. This is un-
common for C programs, but it happens more
frequently in template heavy C++ code where
function bodies are large due to in-lining (Ta-
bles 10 and 9).

We do not use the red zone for spilling registers
nor for storing local variables in non-leaf func-
tions as GCC is not able to distinguish between
data surviving function calls and data that does
not. Extending GCC to support it may be in-
teresting project and may reduce stack usage
of programs, however we have no data on how
effective the change can be.

To further reduce the expenses, GCC does
schedule the prologue and epilogue sequence
to overlap with function body. In the future we
also plan to implement shrink-wrapping opti-
mization as the expense of saving up to 6 reg-
isters may be considerable.

2.3 Stack Unwinding Algorithm

To allow stack unwinding, we do use additional
information saved in the same format as spec-
ified by DWARF debugging information for-
mat [DWARF2]. Instead of.debug_frame
section specified by DWARF we do use
.eh_frame section so the data are not
stripped.

The DWARF debugging format defines un-
winding using the interpreted stack machine
describing algorithms to restore individual reg-

isters and stack frames. This mechanism is
very generic and allows compiler to do pretty
much any optimization on stack layout it is
interested in. In particular we may eliminate
stack frame pointer and schedule prologues
and epilogues into the function body.

The disadvantage is the size of produced infor-
mation and speed of stack unwinding.

GCC Implementation

Implementation in GCC was straightforward
as DWARF unwinding was already used for
exception handling on all targets except for
IA-64. We extended it by support for
emitting unwind info accurate at each in-
struction boundary (by default GCC opti-
mize the unwind table in a way so it is ac-
curate only in the places where exceptions
may occur). This behavior is controlled via
-fasynchronous-unwind-tables .

GCC perform several optimizations on the un-
wind table size and the tables are additionally
shortened by assembler, but still the unwind ta-
ble accounts for important portion of image file
size.

As can be seen in the Table 7 it con-
sumes, at the average, 7.7% of the
stripped program binaries size, so use of
-fno-asynchronous-unwind-tables
is recommended for program where unwinding
will never be necessary.

The GCC unwind tables are carefully gener-
ated to avoid any runtime resolved relocations
to be produced, so with the page demand load-
ing tables are never load into memory when
they are not used and consume the disc space
only.

Main problem are the assembly language func-
tions. At the present programmer is required
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to manually write DWARF byte-code for any
function saving register or having nonempty
stack frame in order to make unwinding work.
This is difficult and most of assembly language
programmers are unfamiliar with DWARF. It
appears to be necessary to extend the assem-
bler to support describing of the unwind infor-
mation using the pseudo-instructions similar to
approach used by [IA-64-ABI].

2.4 Register Usage

The decision on split in between volatile (caller
saved) and non-volatile (callee saved) register
presented quite difficult problem. The AMD64
architecture have only 15 general purpose reg-
isters and 8 of them (so called extended regis-
ters) requireREXprefix increasing instruction
size. Additionally the registers%rax , %rdx ,
%rcx , %rsi and%rdi implicitly used by sev-
eral IA-32 instructions. We decided to make all
of these registers volatile to avoid need to save
particular register only because it is required by
the operation. This leaves us with only%rbx ,
%rbp and the extended registers available for
non-volatile registers. Several tests has shown
smallest code to be produced with 6 global reg-
isters (%rbx , %rbp, %r12–%r15).

Originally we intended to use 6 volatile SSE
registers, however saving of the registers is dif-
ficult: the registers are 128-bit wide and usu-
ally only first 64-bits are used to hold value, so
saving registers in the caller is more expensive.

We decided to delay the decision until hard-
ware is available and run several benchmarks
with different amount of global registers. We
also experimented with the idea of saving only
lower half of the registers. Our experiments al-
ways did lead to both longer and slower code,
so in the final version of ABI all SSE registers
are volatile.

Finally the x87 registers must be volatile be-

cause of their stack organization and the direc-
tion flag is defined to be clear.

2.5 Argument Passing Conventions

To pass argument and return values, the regis-
ters are used where possible. Registers%rdi ,
%rsi , %rdx , %rcx , %r8 and%r9 are used
to pass integer arguments. In particular, reg-
ister %rax is not used because it is often re-
quired as special purpose register by IA-32 in-
structions so it is inappropriate to hold function
arguments that are often required to be kept in
the register for a long time. Registers%xmm0–
%xmm5are used to pass floating point argu-
ments. x87 registers are never used to pass ar-
gument to avoid need to save them in variadic
functions.

To return values registers%rax , %rdx ,
%xmm0, %xmm1, %st0 and %st1 are used.
The usage of%rax for return value seems to be
considerable win even at the expense of extra
mov instruction needed for functions returning
copy of the first argument and functions return-
ing aggregates in memory via invisible refer-
ence.

The aggregates (structures and unions) smaller
than 16 bytes are passed in registers. The
decision on what register class (SSE, integer
or x87) to use to pass/return the aggregate is
rather complicated; we do pass each 64-bit part
of structure in separate register, with the excep-
tion of __m128 andlong double .

The argument passing algorithm classifies each
field of the structure or union recursively into
one of the register classes and then merge the
classes that belongs to the same 64-bit part.
The merging is done in a way so integer class
is preferred when both integer and SSE is used
and structure is forced to be passed in memory
when difficult to resolve conflicts appears. The
aggregate passing specification is probably the
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most complex part of the ABI and we hope that
the benefits will outweight the implementation
difficulties. For GCC it requires roughly 250
lines of C code to implement.

Arguments requiring multiple registers are
passed in registers only when there are enough
available registers to pass argument as a whole
in order to simplyva_arg macro implemen-
tation.

Variable sized arguments (available in GCC
only as GNU extension) are passed by ref-
erence and everything else (including aggre-
gates) is passed by value.

GCC Implementation

It is difficult to obtain precise numbers, but it
is clear that the register passing convention is
one of the most important changes we made
relative to [i386-ABI] improving both perfor-
mance and code size. The amount of stack ma-
nipulation is also greatly reduced resulting in
shorter debug information. On the other hand,
the most complex part, passing of aggregates,
has just minor effect on C code. We believe it
will become more important in future for C++
code.

At the moment GCC does generate subopti-
mal code in number of cases where aggregate
is passed in the multiple registers — the ag-
gregate is often offload to memory in order
to load it into proper registers. Beside that
GCC should implement all nuances of argu-
ment passing correctly.

For functions passing arguments in memory,
the stack space is allocated in prologue; deal-
located in epilogue and plainmov operations
are used to store arguments. This is in contrast
to common practice to usepush operation for
argument passing to reduce code size. Despite
that experimental results shows both speedups

and code size reductions of the AMD64 bi-
naries whenmov instructions are used (See
-maccumulate-outgoing-args in the
Table 7, 8, 9, and 10). This is in sharp contrast
to IA-32 code generation experience (Tables 11
and 12).

There are multiple reasons for the image size
to be reduced. Usage ofpush instructions in-
creases unwind table sizes (about 3% of the bi-
nary size). Most of the functions has no stack
arguments, however they still do require stack
frame to be aligned. This makes GCC to emit
number of unnecessary stack adjustments. Last
reason seems to be fact that majority of values
passed on the stack are large structures where
GCC is not using push instructions at all.

2.6 Variable Argument Lists

More complex argument passing conventions
require nontrivial implementation variable ar-
gument lists. Theva_list is defined as fol-
lows:

typedef struct {
unsigned int gp_offset;
unsigned int fp_offset;
void *overflow_arg_area;
void *reg_save_area;

} va_list[1];

The overflow_arg_area points to the
end of incoming arguments area. Field
reg_save_area points to the start of reg-
ister save area.

Prologue of function then uses 6 integer moves
and 6 SSE moves to save argument registers. In
order to avoid lazy initialization of SSE unit in
the integer only programs, hidden argument in
the register%al is passed to functions that may
use variable argument lists specifying amount
of SSE registers actually used to pass argu-
ments.
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We decided to use the array containing
structure for va_list type same way as
[PPC-ABI] do to reduce expenses of passing
va_list to the functions — arrays are passed
by reference, while structures by value. This is
valid according to the C standard, but brings
unexpected behavior in the following function:

#include <stdarg.h>
void t (va_list *);
void q (va_list a)
{

t(&a);
}

The functiont expects address of the first el-
ement in the array, while in the second one,
the array argument is merely an shortcut for
a pointer so it passes pointer to the pointer to
the first argument. This unexpected behavior
did not trigger in Open Source programs since
these already has been cleaned up to work on
Power-PC, but has been hit by proprietary soft-
ware vendors who claimed this to be a compiler
bug even when GCC correctly emit an warning
message “passing arg 1 of ‘t’ from incompati-
ble pointer type”

GCC Implementation

The register save area is placed on fixed place
in stack frame as shown in Figure 3. There is
no particular reason for that, but it was slightly
easier to implement in GCC.

The computed jump is used in the prologue
to save only registers needed. This results
in small savings for programs calling vari-
adic function with floating point operands, but
makes program calling variadic functions us-
ing non-variadic prototypes to crash. Such pro-
grams are not standard conforming, but they
happen in practice. We noticed the problem for

strace and Objective C runtime. We may con-
sider replacing the jump table by single condi-
tional to avoid such crashes.

Second important compatibility problems ar-
rises from implicit type promoting. All 64-
bit targets supported by SuSE Linux do pro-
mote operands to 64-bit values and several
packages depend on it. Most notable exam-
ple is GNOME. While promoting all function
operands to 64-bit would be too expensive, we
may consider promoting the operands of vari-
adic functions to avoid such compatibility is-
sues.

2.7 Code Models

The 32-bit sign extended immediates and zero
extending loads of the immediate allows con-
venient addressing of only first231 bytes of the
address space. The other areas needs to be ad-
dressed viamovabs instructions or instruction
pointer relative addressing. In order to allow
efficient code generation for programs that do
fit in this limitation (almost all programs today)
we define several code models:

small All relocations (code and data) are
expected to fit in the first231 bytes.
This is the default model GCC use.
This code model can be produced via
-mcmodel=small command line op-
tion.

kernel All relocations (code and data) are ex-
pected to fit in the last231 bytes. This
is useful for kernel address space to
not overlap with the user address space.
This code model can be produced via
-mcmodel=kernel command line op-
tion.

medium Code relocations fit in the first231

bytes and data relocations are arbitrary.
This code model can be produced via



GCC Developers Summit 2003 • 87

-mcmodel=medium command line op-
tion. The medium code model has signif-
icant code size (about 10%) and notice-
able performance (about 2%) penalty (see
Tables 7, 8, 9 and 10). These penalties
are larger than the authors expectations
and probably further improvements to the
GCC code generation are possible.

large Code relocations and data relocations
are arbitrary. This model is currently not
supported by GCC as it would require
to replace all direct jumps via indirect
jumps. We don’t expect this model to be
needed in foreseeable future. Large pro-
grams can be split into multiple shared li-
braries.

The position independent code generation can
be effectively implemented using the instruc-
tion pointer relative addressing. We imple-
mented scheme almost identical to IA-32 po-
sition independent code generation practices
only replacing the relocations to option global
offset table address and index in it by single
instruction pointer relative relocation. Simi-
larly the instruction pointer relative addressing
is used to access static data.

The resulting code relies on the overall size of
the binary to be smaller than231 bytes. An
[AMD64-PSABI] extension will be needed in
the case this limitation will become a problem.
The performance penalty of-fpic is about
6% on AMD64 compared to 20% on IA-32
(see Tables 9, 10, 11 and 12).

3 Implemented Optimizations

In this section we describe target specific op-
timizations implemented for the first hardware
implementation of AMD64 architecture — the
AMD Opteron CPU.

The AMD Opteron CPU core has rather com-

plicated structure. The AMD64 instructions
are first decoded and translated into micro op-
erations and passed to separate integer and
floating point on chip schedulers. Integer in-
structions are executed in 3 symmetric pipes
of overall depth 11 with usual latency of 1
cycle, while floating point instructions are is-
sued into 3 asymmetric pipes (first executing
floating point add and similar operations, sec-
ond having support for long latency instruc-
tions and multiple and third executing loads
and stores). For more detailed description see
also [Opteron].

The processor is designed to perform well on
the code compiled for earlier IA-32 imple-
mentation and thus has reduced dependency
on CPU model specific optimizations. Still
several code generation decisions can be opti-
mized as described in detail in [Opteron]. We
implemented majority of these and here we de-
scribe only those we found most effective.

As can be seen in the Table 11, enabling AMD
Opteron tuning via-march=k8 improves in-
teger program performance by about 10% rel-
ative to compiler optimizing for i386. Relative
to the compiler optimizing for Pentium-Pro the
speedup is only about 1.1%. The optimizations
common for Pentium-Pro and Opteron include
the scheduling (scheduling for Pentium-Pro
still improves Opteron performance), avoid-
ing of memory mismatch stalls, use of new
conditional move andfcomi instructions and
-maccumulate-outgoing-args .

For floating point programs the most impor-
tant optimization is use of SSE instruction
set (10%) followed by the instruction schedul-
ing (not visible in the Table 12 because the
x87 stack register file does not allow effective
scheduling, but noticeable in the Table 10).
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3.1 Integer Code Instruction Selection

Majority of IA-32 instructions generated by
today compilers are well implemented in the
Opteron core so the code generation is straight-
forward.

In the Tables 7, 8, 9 and 10, “full sized loads
and moves” refers to the transformation of 8-
bit and 16-bit loads into zero extensions; use of
32-bit reg-reg moves for moving 8-bit and 16-
bit values and symmetric change for SSE. The
transformation is targeted to avoid hidden de-
pendencies in the on-chip scheduler. The trans-
formation has important effect for SSE code
and smaller but measurable effect on code ma-
nipulating with 8-bit and 16-bit values.

Second important optimization we imple-
mented is elimination of usepush andpop in-
structions as mentioned in Section 2.2 and 2.5

Other optimization implemented had just mi-
nor effect on overall performance.

3.2 SSE floating point arithmetics

Unlike integer unit, the floating point unit has
longer latencies (majority of simple floating
point operations takes 3 cycles to execute) and
is more sensitive to instruction choice.

The operations on whole SSE registers are usu-
ally more expensive than operations on the 64-
bit halves. This holds for the move opera-
tions also, so it is desirable to always use par-
tial moves when just part of SSE register is
occupied (this is common for scalar floating
point code). In particular it is desirable to use
movlpd instead ofmovsd to load double pre-
cision values, sincemovsd does clear upper
half of the register.movsd is the used for reg-
ister to register moves. This remains the upper
half of register undefined that may cause prob-
lem when the register is used as a whole for
instance for logical operation that has no scalar

equivalent. The CPU internally keeps values
in different format depending on how they are
produced (either single, double precision or in-
teger) when register is in wrong format, serve
reformatting penalty occurs.

In order to eliminate reformatting penalties we
do reformat the register explicitly before each
such operation (fortunately the logical opera-
tions are rare in generated code as they are used
for conditional moves and fabs/neg expansion
only) usingmovhlpd . In the future it may
be interesting to implement special pass insert-
ing the conversions only when they are actually
needed as most of themovhlpd instructions
emit are redundant. See “partial SSE register
moves” in the Tables 7, 8, 9 and 10 for the com-
parison of this code generation strategy to the
usual one recommended by [Pentium4].

For single precision scalars the situation is
different. There is no way conveniently to
load single precision data into memory with-
out clearing the upper part of register (movlps
require 64-bit alignment) and thus we maintain
the whole registers in single precision. In par-
ticular we do usemovss to load values and
movaps for register to register moves.

This scheme brings difficulties with
cvtsi2ss and similar instructions that
do rewrite the lower part only. In this case
xorps is used first to clear the register. Again
the large portion ofxorps instructions issued
this way are redundant because the register
is already in specified format. The CPU also
special casecvtsd2ss instruction where
the bytes 4–8 of the register are reformatted
to single precision too, however bytes 8–16
remains in the previous format. We risk the
reformatting penalty here, since bytes 8–16 are
rarely in the double precision format because
of the use of partial moves described above.
We plan to add an command line option to
force issuing of the reformatting here. Also
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we may reconsider this decision in the case
we implement the pass for smart placement of
reformatting instructions. See Tables 7, 8, 9
and 10, and benchmark “full sized loads and
moves” described in Section 3.1.

3.3 Scheduling

Implementation of instruction scheduling was
difficult for several reasons. The AMD
Opteron CPU has complicated pipeline ex-
panding each operation into multiple micro op-
erations renaming the register operands and ex-
ecuting them separately in rescheduled order.
The available documentation is incomplete and
the effect of instruction scheduling on such ar-
chitectures does not appear to be well studied.

As can be seen in Table 10, instruction schedul-
ing enabled via-fschedule-insns2 re-
mains one of the most important optimizations
we implemented for floating point intensive
benchmarks. On the other hand the effect is
about 10 times lower than on the in-order Al-
pha CPU (Table 14).

GCC at the present implements only local ba-
sic block scheduling that is almost entirely re-
dundant with the out-of-order abilities of the
CPU. We experimentally implemented an lim-
ited form of trace scheduling and measured an
improvement of additional 1% for the SPECfp.
Our expectation is that the more global the
GCC scheduler algorithm will be, the less re-
dundancies with out-of-order core will be ap-
parent, so the benefits of global algorithms
should be comparable to ones measurable on
in-order CPUs.

Our implementation represents just a simpli-
fied model of the real architecture. We model
the allocations of decoders, floating point unit
(fadd, fmul and fstore), the multiplier and load
store unit. We omit model of the reorder
buffers — the micro instructions are assumed

to be issued to the execution pipes immedi-
ately in the fixed model. This also allows us
to omit model of the integer and address gen-
eration units as never more than 3 instructions
are issued at once.

Most of the stalls the scheduler can avoid are
related to loads and stores. In order to avoid
the stall it is necessary to model the instruc-
tion latencies and the fact that address operands
are needed earlier than the data operands. The
scheduler can reorder the computations so the
data operands are computed in parallel with
loads. GCC scheduler does assume that all the
results must be available in order to instruc-
tion be issued and thus we reduce the laten-
cies of instructions computing values used as
data operands of load-execute instructions by
up to 3 cycles (the latency of address gener-
ation unit). Even when latencies of majority
instructions are shorter than 3 cycles and thus
we can not reduce the latency enough to com-
pensate the load unit latency, this model is ex-
act for the in-order simplification of CPU de-
scribed above as the instruction computing data
operands must be output before load-execute
instruction itself.

4 Experimental Results

We present benchmarks of majority opti-
mizations discussed. We also present the
same benchmarks performed on IA-32 and
Alpha system where possible to give an
comparison of effectivity of individual opti-
mizations on these architectures. We hope
this to be useful to apply earlier published
results on compiler optimization (such as
[FDO]) to the new platform and give a
guide of what optimizations are most im-
portant. We also present results with two
different optimization levels — the standard
optimization (-O2 ) used by the majority of
distributions today and aggressive optimiza-
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tion (-O3 -ftracer -funroll-loops
-funit-at-a-time with profile feedback)
we found to give best overall SPEC score.

We did use modified prerelease of GCC 3.3 as
used by SuSE Linux 8.2 for AMD64. All the
runs were performed on SuSE Linux on dedi-
cated machines, however important amount of
random noise remains (especially for bench-
marks Mesa, Gzip, Perl and Twolf). Due
to time limitations the benchmarks were per-
formed with one iteration only except for the
benchmarks in the Table 9 and 10 that were
computed with 3 iterations. Because the runs
were not done on final hardware and because
we didn’t satisfy the conditions for reportable
runs in all tests, we present relative numbers
only.

Each table is divided into two sections — first
part includes optimizations enabled by default
at given optimization level, while the other part
contains optimization that user needs to enable
by hand either because they are ineffective,
inappropriate for given settings or does not
obey the language standards. Each table also
contains comparison of two runs with equal
settings in the first line to present rough ap-
proximation of the noise in the numbers. Both
performance and sizes of the stripped binaries
are presented. The numbers always represent
relative speedup (or code size increase) from
the run with the specified feature disabled
to the run with specified feature enabled.
For instance -fomit-frame-pointer
run in the table 7 compare performance of
-O2 -fno-omit-frame-pointer to
-O2 -fomit-frame-pointer . The
benchmark “standard optimization” compares
-O0 to -O2 .

The Following benchmarks were performed:

aggressive optimizationcompare perfor-
mance of unoptimized code (-O0 ) to

the aggressive optimization settings
described above.

all prologue using move eliminate use of all
push and pop operations in the pro-
logues and epilogues except for cases
where single register is saved. See Sec-
tion 2.2.

-fasynchronous-unwind-tablesenable pro-
duction of DWARF2 unwind information.
See Section 2.3.

-fbranch-probabilities enable pro-
file feedback based optimizations. We
implemented majority of transformations
described on [FDO] with the exception
of function in-lining and switch statement
expansion.

-fgcse enable global optimizers including
(limited form of) partial redundancy elim-
ination, load motion, constant propaga-
tion and copy propagation. GCC does
contain loop invariant hoisting and ex-
tended basic block based value numbering
pass making the global optimizers partly
redundant.

-fguess-branch-probability
enable optimizations driven by static pro-
file estimation. The profile is estimated
by methods based on [profile] when
profile feedback is not available.

-finline-functions enable function
in-lining.

-fold-unroll-loops enable old loop
unroller that actually unrolls some loops
on Alpha.

-fomit-frame-pointer enable elimina-
tion of frame pointer by using stack
pointer instead. See Section 2.2.
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-foptimize-sibling-calls
transform call to leaf function into
jump.

-fpeel-loops enable loop peeling.

-fpic produce position independent code.
See Section 2.7.

-freorder-blocks enable intra-function
basic block reordering and duplication
based on significantly modified software
trace cache algorithm [STC].

-fschedule-insns2 enable post-register
allocation local scheduling. See Section
3.3.

-fschedule-insns enable pre-register
allocation region scheduling (not avail-
able for IA-32 and AMD64).

-fstrength-reduce enable strength re-
duction.

-fstrict-aliasing enable ANSI-C
type based aliasing.

full sized loads and movesavoids use of in-
structions initializing just portion of the
destination registers. See Section 3.2 and
3.1.

-ftracer enable super-block formation us-
ing algorithm similar to [FDO]. The
super-blocks are unified again after opti-
mizations by cross-jumping pass so this
transformation is not used to improve
scheduling as commonly described in the
literature. It is aimed to improve CSE
and other transformation by simplifying
the control flow.

-funit-at-a-time enable optimizations
on whole compilation unit. At the mo-
ment GCC perform stronger function in-
lining (in-lining of small functions called
before defined and static functions called

once) and use register calling conventions
for static functions on IA-32. Only effec-
tive for C compiler.

-funroll-all-loops enable loop un-
rolling of all small enough loops in the hot
spots.

-funroll-loops enable loop unrolling
for loops with known induction variable.
While working on the paper we noticed
that our new implementation has impor-
tant flaw avoiding loops from being un-
rolled on Alpha architecture.

-m64 enable 64-bit code generation (used in
comparisons relative to IA-32 code).

-mfpmath=sse eliminate use SSE(2) in-
struction set for scalar floating point cal-
culations.

-mcmodel controls code and data segment
size limits. See Section 2.7.

-mred-zone enable use of 128 bytes below
stack pointer for local data. See Section
2.2.

partial SSE moves eliminate use ofmovlpd
for double precision loads andmovsd for
register to register moves. See Section
3.2.

prologue using moveeliminate use of hot
push and pop operations in the pro-
logues and epilogues. See Section 2.2.

standard optimization compare performance
of unoptimized code (-O0 ) to the stan-
dard optimization settings (-O2 ).

4.1 Real World Performance

One of the main goals has been to develop
system ready for both enterprise and desktop
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options slowdown
0.00%

-fstrict-aliasing -1.13%
-fasynchronous-unwind-tables -0.38%
-freorder-blocks 0.00%
-fomit-frame-pointer 0.37%
-mred-zone 0.38%
-mfpmath=sse 0.75%
-maccumulate-outgoing-args 0.75%
-foptimize-sibling-calls 0.76%
-fguess-branch-probabilities 1.54%
-fschedule-insns2 2.33%
-fgcse 6.88%
-ffast-math -1.88%
-ftracer 0.00%
-frename-registers 0.74%
-funroll-loops 3.38%
-fpic 3.39%
-funroll-all-loops 5.32%
-mcmodel=medium 2.27%
-fbranch-probabilities 142.74%

Table 1: Compilation Time Cost (AMD
Opteron)

(workstation) use. While the need of 64-bit ad-
dressing space for the enterprise is well under-
stood, the effect on desktop performance is of-
ten discussed. The main drawback of 64-bit
system, as discussed in section 2.1 is the in-
creased memory footprint of the programs and
subsequent slowdown of program startup times
critical for today desktop systems.

In this section we present few simple bench-
marks of this phenomenon on SuSE Linux 8.2.
Both the 32-bit and 64-bit version of the sys-
tem were installed on the equally sized Reis-
erFS partitions in the default configuration.
The tests were performed in the same order on
both systems with reboots in between. Addi-
tional packages were installed as needed. We
hope this procedure to minimize amount of the
noise in the numbers.

The Table 2 compares startup times of several
programs. As can be seen, the 64-bit system,
perhaps surprisingly, is significantly faster in

test speedup
bootup time -0.9%
KDE startup from disk 18.1%
KDE startup from cache 14.6%

Table 2: Desktop Performance Relative to 32-
bit System

two of them and comparable in bootup times.
The Table 3 compares compilation of the pack-
age gimp.

As can be seen on Table 4 the memory con-
sumption grows up by about1

4
as expected, but

due to relative compactness of CISC AMD64
instruction set, the increase is much smaller
than one seen after switching to RISC or VLIW
systems.

In fact Tables 5 and 6 shows decrease in the
code section sizes.

The major growths can be seen in the section
.eh_frame that is usually not load into the
memory and sections related to the dynamic re-
locations. According to our benchmarks these
are not critical, since dynamic loader is still
slightly faster in 64-bit version compared to
32-bit.

Overall, we can recommend use of 64-bit sys-
tem instead of 32-bit on AMD64 machines in-
tended for desktop use as long as memory con-
sumption increased by 25% is not major limita-
tion (that is hardly the case for computers sold
today).

5 Runtime Library Optimizations

We made following optimizations to glibc:

• Assembly optimized math functions

• Assembly optimized memcpy and
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speedup
test real user system
tar xjf 17.7% 9.8% 4%
./configure -4.3% 0.7% -31%
make 12.9% 19.8% -39%

Table 3: Gimp Compilation Times Relative to
32-bit System

Table 4: Memory Resources Consumption

test 32-bit 64-bit increase
konqueror 14 M 18 M 28%
gimp 8.6 M 9.9 M 15%
mozilla 22 M 27 M 22%

section 32-bit 64-bit increase
.text 56216 K 53419 K -5%
.bss 18169 K 21098 K 16%
.data 10239 K 14076 K 37%
.rodata 17543 K 19734 K 12%
.eh_frame 546 K 8269 K 1414%
.rela.plt 358 K 1076 K 200%
.rela.dyn 40 K 126 K 215%
total 80435 K 91141 K 13%

Table 5: Size of Common Binaries in
/usr/bin

section 32-bit 64-bit increase
.text 71967 K 67526 K -7%
.bss 33463 K 11557 K -72%
.dynstr 13608 K 13587 K -1%
.rodata 12119 K 12217 K 0%
.dynsym 11424 K 7611 K 66%
.eh_frame 6367 K 12730 K 99%
.data 6018 K 9695 K 61%
.rela.dyn 4382 K 12844 K 193%
.plt 3898 K 6499 K 66%
.rela.plt 1293 K 3888 K 200%
.got 823 K 1654 K 100%
total 171812 K 198111 K 15%

Table 6: Size of Common Shared Libraries

memset functions that do use prefetch
and streaming moves for large blocks

• We found malloc implementation in
glibc 2.2 to be bottleneck.malloc in
glibc 2.3 solves this problem.

6 Conclusion

The performance of 64-bit code produced by
GCC is superior to 32-bit for CPU bound inte-
ger and numeric programs (even in comparison
to the best optimizing 32-bit compilers avail-
able).

Most important optimizations include usage
of newly available extended registers, regis-
ter argument passing conventions, use of SSE
for scalar floating point computations and re-
laxed stack frame layout restrictions by using
DWARF2 unwind information for stack un-
winding. The code section of 64-bit binaries
is, on the average, 5% smaller than code sec-
tion of 32-bit binary.

Most noticeable problem is the growth of data
structures caused by 64-bit pointers. This prob-
lem is noticeable as regression in mcf, parser
and gap SPEC2000 benchmarks as well as
about 25% increase in memory overhead of
usual desktop applications and 10% increase of
executable file sizes.

Despite that the overall system performance
seems to be improved even for (nontriv-
ial) benchmarks targeted to measure extra
overhead of increased memory bandwidth,
such as program startup times (0%–20%
speedup), compilation (12%) or SPEC2000 in-
teger benchmark suite (3.3%). Still it can be
worthwhile to implement LP32 code model to
provide an alternative for memory bound ap-
plications.

The aggressive optimizations in argument
passing conventions also brought several com-
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patibility problems especially when dealing
with variable argument lists. Other common
problem is lack of support for DWARF2 in
gas assembler making use of assembly func-
tions in AMD64 code difficult.

By eliminating the common bottleneck of
IA-32 code (such common memory accesses
caused by register starve ISA and argument
passing conventions), the code became more
sensitive to compiler optimizations. Num-
ber of optimizations we evaluated are more
effective in 64-bit than on 32-bit especially
those improving instruction decoding band-
width (AMD64 code usually consists of more
instructions with shorter overall latency), in-
struction scheduling and those that increase
register pressure.

In comparison to DEC Alpha EV56 architec-
ture, AMD Opteron is considerably less sen-
sitive on instruction scheduling and in-lining.
The first is caused by out-of-order architecture
and the second probably by smaller L1 cache.
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Table 7: 64-bit SPECint 2000 with Standard Optimization (AMD Opteron)

Table 7: Performance (relative speedups in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolfavg

1.32 0.14 -0.45 -0.45 -0.17 0.19 0.41 0.11 0.60 0.28 0.27 -0.540.13
standard optimization 105.37 82.29 90.55 12.06 87.14 58.23 451.70 97.05 101.18 75.30 142.14 55.9993.40
-fguess-branch 4.40 4.45 2.90 0.00 2.73 0.19 5.58 5.96 7.43 21.60 2.56 -1.464.10

probabilities
-fschedule-insns2 1.62 1.44 2.40 0.22 0.32 0.78 4.90 1.28 -0.45 4.34 0.41 0.931.46
-fstrict-aliasing 1.48 4.62 1.93 0.00 3.68 0.58 -2.34 1.75 0.75 4.27 4.79 -2.341.19
-mfpmath=sse 1.93 3.98 -0.23 0.00 -0.09 -0.39 2.11 0.00 1.81 3.94 0.27 0.801.06
prologue using move -0.74 0.14 0.34 0.00 4.04 0.98 -0.43 1.43 0.30 5.71 -0.28 0.130.93
full sized loads and moves -1.76 -0.29 -0.46 0.88 0.96 -0.20 24.90 -1.52 -0.45 -1.04 0.97 -3.610.93
-fgcse 1.17 4.28 -1.77 1.35 0.48 1.38 2.33 1.75 -1.48 1.55 1.26 0.130.92
-foptimize 1.62 0.43 -0.12 0.00 3.33 0.00 2.33 -0.35 1.51 2.44 0.27 0.260.92

sibling-calls
-finline-functions 1.62 0.71 0.22 1.11 0.32 3.08 0.30 -1.04 0.58 -0.99 2.21 0.670.65
-fomit-frame-pointer 0.29 1.58 0.56 0.67 5.00 1.57 -3.03 3.07 -0.60 0.47 2.41 -3.480.39
-freorder-blocks 3.61 -0.29 -0.57 0.22 2.31 -0.78 0.72 4.06 0.75 3.45 1.84 -5.310.39
-maccumulate- 1.92 -0.58 0.78 0.45 0.24 -0.39 1.04 -0.12 -0.60 -1.13 0.13 0.800.26

outgoing-args
-mred-zone 1.47 0.14 1.35 -0.23 1.30 -0.20 -1.73 0.00 -0.30 -0.29 0.55 -0.670.13
partial SSE moves -0.30 5.89 -0.92 0.00 0.07 0.00 -1.17 0.00 0.00 -0.10 -0.14 -3.36-0.27
aggressive optimization 6.34 4.97 8.81 0.67 1.29 25.43 24.14 12.29 7.51 5.69 5.42 4.658.40
-fbranch-probabilities 5.95 1.71 7.13 0.22 -0.65 16.76 2.98 3.90 0.14 6.95 0.27 3.734.07
-funroll-all-loops 4.16 0.42 5.60 0.00 -4.28 0.77 16.42 4.02 1.35 0.57 1.82 1.462.50
-funroll-loops 3.71 0.28 4.17 0.00 0.08 0.58 15.35 1.61 1.35 -4.78 0.55 3.322.23
all prologue using move -0.60 0.56 2.38 -0.23 -0.40 0.58 3.73 3.19 -0.15 -4.29 0.55 4.681.05
-ffast-math 1.78 0.28 0.67 0.00 -0.25 -0.20 0.31 -0.81 0.15 2.67 1.12 2.640.78
-frename-registers -0.15 0.56 -0.68 0.00 0.08 0.58 1.34 -2.19 -0.76 -1.25 0.97 4.920.65
-funit-at-a-time 0.89 2.71 0.79 0.45 0.72 0.38 0.00 -0.47 -0.45 0.68 0.69 -0.930.39
-ftracer 3.12 0.14 1.57 0.00 1.13 -0.20 1.76 0.91 -7.81 -3.83 1.40 2.400.13
-cmodel=medium -4.30 -1.00 -0.45 0.00 -10.84 0.00 2.18 -3.57 -5.83 -6.27 -2.23 -0.27-2.51
-fpic -9.11 -1.72 -1.68 0.89 -18.21 -0.78 -1.36 -16.79 -3.76 -15.16 -6.18 -1.48-6.20

Table 7: File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal

standard optimization -11.24 -23.04 -23.74 -20.59 -17.13 -13.77 -13.71 -20.00 -36.54 -9.42 -15.83 -39.29-22.31
-maccumulate- -0.42 -4.02 -3.47 -3.34 -0.35 -3.30 -3.15 -3.29 -4.31 -3.60 5.16 -2.51-3.25

outgoing-args
-fomit-frame-pointer -0.26 1.72 -1.13 -0.20 0.04 -3.76 -1.94 -1.24 -1.07 2.08 -0.08 -0.99-0.71
-fstrict-aliasing 0.00 -0.68 -0.15 0.00 0.00 0.00 0.22 0.00 -0.34 -0.66 0.00 -5.02-0.40
-mred-zone 0.00 -0.11 -0.19 0.00 -0.02 0.00 -0.76 0.59 -0.02 0.00 0.00 -0.04-0.09
-fschedule-insns2 0.00 0.02 -0.15 0.00 0.01 0.00 0.02 0.00 0.00 0.02 0.00 -0.07-0.05
-fgcse -0.11 0.04 -0.16 0.19 0.03 0.11 0.44 0.68 -0.01 -0.68 0.00 -1.16-0.05
-foptimize 0.00 -0.03 0.08 0.00 -0.02 0.00 -0.76 0.48 -0.16 -0.01 -0.23 -0.10-0.03

sibling-calls
partial SSE moves 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.010.02
full sized loads and moves 0.00 0.00 0.04 0.00 1.21 0.00 0.00 0.00 0.08 -0.01 0.00 0.110.08
-mfpmath=sse 0.00 -0.64 -0.15 0.00 0.00 0.00 2.34 -0.01 0.00 0.00 0.00 -1.640.13
prologue using move -0.11 1.06 1.01 0.00 1.26 -0.34 0.91 0.84 1.44 2.55 0.00 0.161.14
-freorder-blocks 7.06 2.71 4.43 0.00 4.05 3.67 1.07 5.72 3.42 5.60 10.89 4.224.19
-finline-functions -0.73 1.15 8.85 -0.20 0.24 28.60 0.12 6.55 3.37 1.99 29.84 0.685.49
-fguess-branch 7.00 4.41 5.82 0.00 3.60 3.34 2.64 6.67 5.85 8.74 10.89 3.975.66

probabilities
-fasynchronous 7.12 10.28 7.38 6.31 3.76 17.16 4.83 9.26 9.04 7.88 18.14 5.347.71

unwind-tables
-fbranch-probabilities -4.91 -2.07 -2.20 0.82 0.11 0.02 -2.44 -3.92 -3.74 -4.72 -7.30 -1.80-2.85
-funit-at-a-time -22.64 -4.95 -1.50 0.00 0.00 0.00 0.00 -0.82 -0.08 -0.01 0.00 -0.10-1.09
-ffast-math 0.00 -0.03 0.00 0.00 0.00 0.00 0.00 -0.68 0.00 -0.02 0.00 0.01-0.09
-frename-registers 0.00 0.26 0.97 0.00 0.28 0.00 1.99 0.68 0.24 0.04 0.00 1.830.78
all prologue using move -0.73 4.14 1.14 -0.96 -0.33 2.18 1.35 0.87 1.60 0.52 -0.77 2.381.17

Table continues on next page. . .
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Table 7 Continued—File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal
-ftracer 0.00 1.27 1.29 0.00 0.13 0.00 2.50 2.01 2.46 1.31 0.00 1.541.56
-funroll-loops 13.30 7.92 3.18 1.34 4.22 7.11 1.26 2.70 12.57 0.02 9.82 8.704.21
-funroll-all-loops 13.30 9.53 4.29 24.50 4.71 14.20 1.43 3.38 15.76 0.66 9.82 14.405.71
-fpic 12.11 6.53 3.62 1.14 21.40 9.38 1.92 6.48 15.53 9.16 7.06 16.667.55
-mcmodel=medium 13.62 8.10 7.10 0.00 17.57 7.44 6.35 8.29 8.35 6.64 9.90 13.338.09
aggressive optimization -14.42 4.03 21.89 5.12 6.44 44.45 -0.47 8.80 7.38 0.73 40.05 3.9311.08

Table 8: 64-bit SPECfp 2000 with Standard Optimization (AMD Opteron)

Table 8: Performance (relative speedups in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsiavg

-0.28 -0.13 0.00 0.00 0.23 -2.07 0.14 0.00 0.00 0.00-0.16
standard optimization 102.22 54.49 633.14 220.37 79.20 22.69 90.76 111.08 204.34 192.64142.52
-mfpmath=sse 9.30 0.12 3.31 2.38 11.68 102.55 0.28 8.32 11.53 6.0112.43
-fguess-branch- 7.62 0.00 6.42 2.78 7.48 0.42 -2.23 -1.27 -0.29 4.722.75

probabilities
partial SSE moves 2.86 0.13 2.95 3.21 3.34 -3.26 0.86 3.11 3.86 3.332.12
full sized loads and moves 2.13 0.26 1.35 1.98 6.38 0.69 0.00 2.00 1.45 1.551.78
-fstrict-aliasing 0.00 0.12 0.00 0.19 2.22 5.22 -2.23 0.90 0.00 5.081.44
-fschedule-insns2 2.23 0.00 7.72 0.78 0.34 -1.40 -2.50 0.90 4.50 1.011.28
-freorder-blocks 0.97 0.12 0.18 0.19 13.09 2.28 0.28 0.00 -1.42 0.001.28
-fomit-frame-pointer 2.51 0.00 4.53 0.38 -0.58 -1.80 -1.13 0.90 -0.29 3.630.95
prologue using move -3.24 0.00 0.00 0.00 3.58 0.69 0.00 -0.14 0.00 0.000.15
-finline-functions 0.13 0.12 0.00 0.19 1.85 -1.51 1.84 -0.52 0.28 -0.170.15
-foptimize 0.82 0.12 0.18 0.19 -0.46 -0.97 0.00 0.12 0.00 0.000.00

sibling-calls
-mred-zone 0.00 0.00 0.00 0.38 0.57 0.97 -2.10 -0.26 0.00 0.160.00
-maccumulate- 0.55 -0.13 0.18 0.00 0.45 -3.46 0.00 0.00 -0.29 0.33-0.16

outgoing-args
-fgcse 1.37 0.00 -7.19 -5.15 -0.23 0.69 0.42 -0.64 -4.14 -2.13-1.71
aggressive optimization 5.57 -0.91 6.60 4.26 4.14 -1.93 7.96 3.58 10.63 -2.343.15
-funroll-all-loops 2.72 -0.13 1.88 2.32 -1.50 5.58 0.42 3.58 -0.29 1.161.58
-funroll-loops 2.72 0.00 1.88 2.51 -0.92 2.67 2.13 3.58 -0.29 1.161.57
-ffast-math 0.81 0.00 0.00 2.13 1.26 -3.16 0.99 4.74 0.57 1.500.94
all prologue using move 4.18 0.00 -0.39 0.19 0.23 -0.98 1.86 -0.27 1.14 0.340.63
-fbranch-probabilities -3.44 0.12 -0.94 0.38 15.14 -1.40 -0.15 -0.65 0.85 -3.350.15
-funit-at-a-time 0.13 0.12 -0.19 0.00 3.93 -3.54 0.14 0.12 0.00 -0.170.15
-frename-registers -3.54 -0.26 5.66 -0.39 -7.23 -1.11 4.97 3.46 0.86 -0.340.15
-ftracer -0.82 0.00 0.00 0.00 -2.87 -2.35 -0.15 0.77 0.86 -0.67-0.64
-cmodel=medium 2.73 -0.26 -0.19 -0.39 -3.69 -0.83 -0.72 -1.03 -14.95 -0.17-1.90
-fpic 0.95 0.00 0.37 -0.97 1.72 -0.29 0.71 -0.13 -20.98 -0.17-1.90

File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal
standard optimization -25.71 -26.52 -36.03 -60.14 -34.62 -15.82 -33.14 -32.33 -38.32 -30.33-36.85
-maccumulate- -1.63 -0.71 -1.83 -0.71 -3.40 -2.07 -1.80 -2.77 -1.12 -1.17-1.89

outgoing-args
-fschedule-insns2 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.02 -0.43 0.00-0.21
-mred-zone 0.00 0.00 -0.19 -2.31 -0.13 -0.08 -0.14 -0.12 -0.03 -0.12-0.14
-fgcse 0.00 -8.64 -4.00 -10.19 -0.74 1.91 -0.38 0.00 1.70 -3.61-0.07
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Table 8 Continued—File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal
-fstrict-aliasing 0.00 0.00 0.00 0.00 -0.13 0.07 0.00 -0.05 0.00 0.00-0.04
-foptimize 0.00 0.00 0.00 0.00 -0.24 0.00 0.00 0.04 -0.02 0.68-0.02

sibling-calls
full sized loads and moves 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.750.08
-fomit-frame-pointer 0.00 0.47 0.75 -1.97 -0.05 0.39 -0.14 0.37 0.12 5.740.43
partial SSE moves 0.00 0.23 0.00 0.71 0.79 0.00 0.00 0.24 0.43 0.890.53
prologue using move -0.28 0.00 0.00 0.11 1.78 0.00 0.00 0.26 -0.02 0.700.53
-freorder-blocks 0.00 0.47 0.00 0.11 2.44 0.00 0.00 2.62 0.86 1.371.38
-mfpmath=sse 0.00 2.16 0.00 6.26 -1.57 0.00 -0.14 3.19 2.65 4.391.60
-fguess-branch -0.28 1.43 0.00 -0.36 5.10 12.16 10.56 3.04 0.41 1.192.09

probabilities
-finline-functions 0.00 0.00 0.00 0.00 5.39 19.96 0.13 0.42 1.29 1.502.45
-fasynchronous- 9.34 3.15 6.75 1.92 10.46 16.55 13.01 6.21 1.25 3.834.67

unwind-info
-fbranch-probabilities 0.64 0.15 0.76 0.19 -5.23 0.70 0.61 -2.11 -0.28 -0.06-1.58
-ffast-math 0.00 -0.95 0.00 0.58 -0.83 -13.04 -0.27 -5.57 0.86 0.00-0.35
-funit-at-a-time 0.00 0.00 0.00 0.00 -0.07 0.00 0.00 -0.03 0.00 0.00-0.03
all prologue using move -0.28 1.40 0.37 1.29 0.78 -1.02 -0.40 2.26 0.61 1.960.86
-ftracer 0.00 0.00 0.00 0.00 2.37 0.07 0.00 5.45 0.43 3.351.51
-frename-registers 0.00 0.47 0.00 2.65 1.78 0.00 0.00 2.60 2.58 0.862.10
-funroll-loops 1.93 24.69 6.32 6.42 7.95 20.05 0.65 11.14 3.02 6.635.63
-funroll-all-loops 1.93 24.69 7.25 6.42 8.19 20.05 2.35 11.14 3.02 6.635.73
-fpic 0.45 0.23 0.93 2.24 5.92 9.28 7.71 4.91 8.04 3.756.51
-mcmodel=medium 0.09 4.93 0.00 7.49 3.53 0.85 1.83 5.45 24.62 6.3614.32
aggressive optimization 71.81 164.20 125.37 57.30 11.28 97.53 52.54 12.91 26.21 34.1026.45

Table 9: 64-bit SPECint 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolf avg

-0.28 -0.41 0.20 -0.45 0.00 -0.16 0.00 -0.11 0.84 0.00 0.13 0.380.12
aggressive optimization 112.35 91.73 103.60 14.72 86.01 97.56 589.65 130.46 111.79 74.46 151.98 56.79106.81
-fbranch-probabilities 8.40 2.62 10.71 0.22 3.38 21.72 27.67 27.67 14.24 10.37 4.39 -1.569.49
-fguess-branch . . .
full sized loads and moves 1.00 0.67 -0.53 0.00 0.97 -0.48 56.39 1.79 0.71 0.62 0.13 4.644.61
-fbranch-probabilities 2.69 0.00 5.62 -0.45 2.62 19.85 -0.92 11.94 4.06 2.29 1.07 0.513.77
-m64 9.90 0.27 3.39 -22.19 42.29 -2.13 45.66 0.30 -1.25 6.29 8.28 -13.333.38
-funroll-loops 1.69 0.54 0.41 0.22 0.88 1.41 16.94 7.59 0.56 1.73 0.93 4.623.12
-freorder-blocks 4.95 1.22 4.51 0.22 3.89 1.89 2.40 13.06 -0.56 -1.42 0.40 1.152.48
-fomit-frame-pointer 0.13 0.00 2.19 0.44 2.03 1.73 2.31 5.38 -0.28 1.08 1.47 5.052.10
-fstrict-aliasing -0.56 4.80 0.82 0.44 1.04 1.89 1.61 2.08 1.72 1.64 5.88 1.151.85
-finline-functions -0.42 0.54 1.55 2.02 1.86 5.21 1.01 -0.31 0.42 3.62 3.13 2.751.85
-ftracer -0.69 -0.27 0.30 0.00 1.12 0.78 5.20 3.93 0.14 0.27 0.53 4.901.60
-fschedule-insns2 0.27 2.62 0.41 0.22 4.24 0.46 2.57 1.55 0.99 3.34 1.61 0.641.47
-mred-zone -0.42 0.13 0.61 0.66 0.96 0.31 -1.33 1.56 -0.56 7.01 -0.14 3.561.22
-fgcse 2.70 4.06 1.14 -0.23 3.47 -0.77 -0.51 -0.82 2.29 1.27 0.93 0.251.10
-mfpmath=sse -0.28 2.48 -0.52 0.66 1.95 0.78 9.05 0.72 0.14 -2.80 -0.14 1.421.10
-frename-registers -0.42 1.22 -1.13 -0.45 4.24 0.46 -1.90 -0.72 -0.97 1.91 1.47 4.810.98
-funit-at-a-time -0.56 3.50 -1.23 0.22 1.12 0.93 0.16 -1.42 2.73 3.43 -0.27 2.640.98
prologue using move -0.43 0.54 1.06 0.43 1.06 0.79 -2.75 1.89 3.63 6.29 -0.14 -0.260.86
partial SSE moves -0.29 0.81 0.10 -0.44 0.00 0.63 0.00 0.62 0.00 0.26 -0.40 4.780.73
-foptimize 0.00 -0.14 0.61 0.22 0.96 0.78 1.96 0.00 -1.93 -1.86 -0.27 3.150.60

sibling-calls
-maccumulate- -0.28 0.94 -0.11 -0.23 2.53 0.46 1.18 -0.72 2.43 -0.81 0.13 0.630.48
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Table 9 Continued—Performance (relative speedups in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolfavg

outgoing-args
-fstrength-reduce -0.42 0.26 -1.22 0.00 0.64 0.00 -0.59 -1.81 0.42 4.30 -0.14 -0.130.00
all prologue using move -1.13 -0.27 -0.32 -0.22 1.28 0.94 6.46 -0.11 1.54 -1.33 0.39 0.500.61
-ffast-math -0.28 0.40 -1.24 -0.23 -1.92 0.00 0.08 0.10 0.56 1.34 -0.27 -3.56-0.73
-fpeel-loops 0.00 0.13 -1.13 0.22 -1.20 -0.62 0.08 -1.34 -1.69 -3.86 -0.40 -0.26-0.73
-funroll-all-loops 0.00 0.13 0.10 0.00 -0.48 -0.16 -0.84 2.04 -2.12 -5.58 0.26 -7.90-1.70
-cmodel=medium -5.12 -1.21 -2.97 0.44 -10.61 -0.78 -1.09 0.00 0.28 -4.85 -0.67 -7.74-3.28
-fpic -12.73 -1.89 -2.36 -0.89 -13.88 -6.96 -4.36 -12.79 -2.11 -18.23 -10.03 -8.87-8.12

File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal

aggressive optimization -24.01 -19.87 -6.95 -16.43 -11.81 24.89 -14.11 -12.48 -31.74 -8.77 17.87 -36.91-13.57
-fbranch-probabilities -12.51 -8.07 -5.50 -0.95 -2.64 -2.55 -5.80 -7.77 -14.58 -5.56 -12.11 -10.22-7.10
-maccumulate- -1.79 -1.55 -2.33 -1.44 -0.87 -2.85 -3.31 -1.77 -4.10 -3.78 3.05 -1.85-2.58

outgoing-args
-fgcse 0.73 -1.16 -1.95 -0.37 -1.92 -1.27 -0.32 -0.59 -0.38 -0.68 -0.06 -3.33-1.23
-fomit-frame-pointer -1.38 1.02 -0.81 -0.91 -0.27 -1.20 -1.94 -1.43 -1.10 1.41 -0.06 -1.20-0.72
-fstrict-aliasing 0.12 -1.14 -0.11 -0.73 0.00 0.36 0.36 -0.58 -0.56 -0.66 0.00 -5.14-0.46
-mred-zone 0.00 -0.06 -0.06 0.00 0.00 0.00 -0.34 -0.04 -0.02 0.12 0.00 -0.05-0.05
-fschedule-insns2 -0.07 -0.06 -0.07 -0.19 0.01 0.07 0.00 -0.01 -0.02 0.00 0.00 -0.04-0.03
-foptimize 0.06 -0.04 0.10 0.00 0.00 -0.04 -0.45 -0.20 0.13 -0.01 -0.06 -0.05-0.03

sibling-calls
-fstrength-reduce 0.24 0.11 -0.01 0.18 0.01 0.03 -0.02 0.00 0.10 0.00 0.00 0.120.02
partial SSE moves 0.00 0.27 0.00 0.00 0.00 0.01 0.24 0.00 0.00 0.00 0.00 0.010.03
full sized loads and moves 0.18 0.09 0.17 0.00 0.00 0.40 0.01 0.00 0.13 0.00 0.00 0.070.10
-mfpmath=sse 0.00 -1.35 -0.05 -0.55 -0.14 -0.08 3.34 -0.58 0.00 0.00 0.00 -1.390.15
prologue using move 0.00 0.07 0.14 0.00 -0.05 0.40 -0.02 0.45 0.28 0.37 -0.06 0.060.20
-funroll-loops 1.73 0.98 0.34 3.97 1.51 3.22 0.28 0.04 1.00 0.00 0.00 0.770.52
-freorder-blocks 0.24 0.11 1.05 -0.55 0.00 -0.04 0.20 0.63 0.36 0.00 0.00 0.210.53
-frename-registers 1.35 1.18 1.26 0.00 1.47 0.71 2.27 0.67 0.62 0.66 0.00 2.191.16
-ftracer 0.67 1.36 1.57 2.61 2.02 2.29 0.44 1.30 1.61 2.01 0.00 0.581.43
-fbranch-probabilities 6.09 4.09 5.60 5.44 6.03 9.87 -0.21 3.90 3.58 4.49 7.78 3.274.40
-fguess-branch . . .
-funit-at-a-time -14.10 2.25 12.02 0.00 2.04 5.62 0.00 4.14 6.08 2.66 7.60 1.925.94
-m64 16.48 -2.64 8.02 18.47 -19.00 15.52 0.25 11.38 9.65 -5.69 8.64 -3.443.90
-finline-functions 8.71 7.94 23.54 2.80 3.51 39.11 -0.09 11.96 9.86 4.17 39.65 2.7112.98
-ffast-math 0.00 -0.02 0.03 0.00 0.00 0.00 0.00 -0.05 0.00 -0.02 0.00 0.010.00
-funroll-all-loops 0.00 0.23 0.04 2.18 0.00 1.26 0.00 0.57 0.09 0.00 0.00 -2.940.03
-fpic 16.27 4.69 -6.01 0.18 17.87 -21.91 0.96 1.39 6.50 7.12 -21.77 14.970.38
-fpeel-loops 1.57 0.39 0.35 1.63 1.98 5.80 0.00 0.57 0.96 0.00 0.00 1.250.66
all prologue using move 2.18 2.85 1.30 1.45 0.26 2.63 2.31 1.71 2.95 2.77 -0.72 2.621.91
-mcmodel=medium 14.15 9.85 7.56 19.12 18.58 7.95 5.97 9.93 9.90 7.91 21.15 12.949.01

Table 10: 64-bit SPECfp 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsiavg

1.30 0.00 0.89 0.56 -5.34 -0.28 0.00 -0.13 -1.29 1.21-0.16
aggressive optimization 101.11 53.87 686.79 225.30 101.38 26.80 100.81 123.51 225.00 180.97149.23
-m64 5.00 -0.27 16.25 9.79 28.55 83.54 -1.31 19.17 28.33 20.8619.34
-mfpmath=sse 13.97 0.12 2.40 2.33 7.04 100.28 1.79 16.64 22.22 5.6713.80
-fbranch-probabilities -0.83 0.39 10.83 3.96 19.62 2.23 -0.28 6.85 2.24 0.703.98
-fguess-branch . . .
partial SSE moves 1.58 0.13 2.18 1.76 0.70 1.27 -2.51 3.17 6.14 2.541.74
-fstrict-aliasing 0.13 0.00 0.00 0.00 -0.90 4.49 1.37 5.49 0.00 4.711.73
full sized loads and moves -2.25 0.26 3.31 1.16 4.29 2.40 2.92 0.86 2.25 0.891.57
-fschedule-insns2 0.13 0.12 13.06 0.57 -9.93 1.53 -0.68 5.49 3.71 1.581.41
-ftracer 0.27 0.00 -0.19 -0.19 -2.85 0.97 1.79 1.10 0.00 0.340.15
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Table 10 Continued—Performance (relative speedups in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsiavg
-mred-zone -0.95 0.00 -0.19 1.15 -2.32 0.13 1.09 0.00 0.00 0.00-0.16
prologue using move -1.53 0.13 -0.18 -0.20 0.91 -0.84 -0.14 0.00 0.00 -0.18-0.16
-frename-registers 0.00 0.00 4.52 -0.76 -12.07 1.83 3.21 1.84 1.39 -1.03-0.31
-fbranch-probabilities -1.61 0.00 -0.37 -0.57 7.36 -0.83 -0.14 -0.49 0.83 -4.16-0.32
-fomit-frame-pointer -1.08 0.00 0.54 0.95 -11.17 -0.69 0.68 0.85 0.00 1.94-0.62
-finline-functions 0.00 0.12 -0.19 0.00 -12.12 2.97 1.23 0.36 -0.28 0.00-0.77
-maccumulate- 3.20 -0.13 0.00 -0.19 -9.94 -0.70 0.40 -0.13 -0.28 0.00-0.78

outgoing-args
-freorder-blocks 1.08 0.00 -0.19 -0.19 -11.27 1.11 0.13 1.72 0.00 0.00-0.78
-funroll-loops -2.43 -0.13 0.00 1.34 -11.02 0.83 0.54 3.25 0.00 0.34-0.78
-foptimize -1.20 0.00 -0.37 0.00 -13.20 0.97 -0.28 -0.49 0.00 0.34-1.23

sibling-calls
-fstrength-reduce -1.85 0.00 -0.37 5.20 -13.15 -0.14 0.95 -0.85 1.39 -2.04-1.23
-funit-at-a-time -0.96 0.12 -0.19 -0.19 -11.26 0.00 1.09 0.00 0.00 0.00-1.24
-fgcse -1.46 -0.39 -7.52 -4.36 -12.53 1.26 0.40 -0.13 -1.63 -3.19-3.02
-ffast-math -2.01 0.00 -0.19 1.13 14.99 -0.70 2.16 1.45 -0.83 2.941.86
-fpeel-loops 9.94 0.00 -0.19 0.18 0.00 -0.83 -1.22 0.00 0.00 -0.180.62
-funroll-all-loops -0.41 0.12 0.00 -0.19 0.00 0.98 -1.49 -0.13 0.00 0.17-0.16
-fpic 5.42 -0.13 0.00 -0.95 14.84 0.55 -1.76 0.00 -20.67 -0.18-0.63
all prologue using move -5.90 0.00 -0.89 -0.39 0.20 -0.28 0.54 -0.62 0.00 0.17-0.78
-cmodel=medium -0.54 -0.13 -0.55 -1.71 9.68 -3.19 -1.76 -3.88 -16.53 -1.22-2.01

File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal

aggressive optimization -16.48 -15.91 -34.31 -57.92 -33.11 8.36 -29.40 -26.61 -36.44 -25.42-34.22
-fbranch-probabilities 0.55 -8.26 -2.73 -3.79 -12.90 -10.98 -9.59 -7.97 -4.00 -7.95-7.22
-maccumulate- -1.93 -0.62 -1.78 -0.78 -3.49 -0.97 -0.99 -1.92 -0.80 -1.19-1.67

outgoing-args
-mred-zone 0.00 -0.21 -0.37 -2.03 -0.77 -0.13 -0.13 -0.03 -0.01 -0.30-0.30
-fstrict-aliasing 0.00 0.00 0.00 0.00 -0.75 6.80 -10.04 0.00 0.00 -0.18-0.27
-fgcse 0.00 -8.64 -4.00 -10.19 -0.74 1.91 -0.38 0.00 1.70 -3.61-0.07
-fschedule-insns2 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00 0.00-0.03
prologue using move -0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.060.00
-foptimize 0.00 0.00 -0.37 0.00 -0.18 0.00 0.00 0.00 0.36 0.100.13

sibling-calls
full sized loads and moves 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.34 0.080.17
-freorder-blocks 0.00 0.00 0.00 0.00 0.03 0.24 0.49 0.00 0.42 -0.090.21
-funit-at-a-time 0.00 0.00 0.00 0.00 0.11 0.12 4.67 1.85 0.00 0.000.23
-fomit-frame-pointer 8.70 0.82 0.91 -1.92 -0.51 -0.73 -0.38 0.51 0.40 5.130.57
-fstrength-reduce 0.00 0.00 0.18 -0.51 0.03 0.00 0.12 0.00 1.20 0.120.59
partial SSE moves 0.00 0.20 0.18 0.39 0.77 0.60 0.00 0.00 0.82 0.230.65
-ftracer 11.68 0.41 -1.26 0.00 0.03 0.36 0.87 5.54 0.00 0.920.70
-funroll-loops 10.37 14.33 2.03 2.81 0.03 6.59 3.06 2.39 0.35 2.961.09
-fbranch-probabilities 12.12 15.26 2.69 3.25 0.02 19.33 5.59 8.65 0.43 4.671.92
-fguess-branch . . .
-frename-registers 8.99 0.82 0.54 2.99 2.38 1.85 1.76 2.69 2.57 1.582.53
-finline-functions 0.00 0.00 0.00 0.00 5.92 18.22 4.94 2.41 1.27 1.842.75
-mfpmath=sse 8.70 2.96 2.03 8.08 -0.75 6.59 3.99 5.54 5.28 5.133.72
-m64 45.40 201.01 156.05 26.51 17.41 39.81 27.06 23.41 28.79 38.2228.68
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Table 10 Continued—File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal
-ffast-math 0.00 -0.83 0.00 0.94 -0.85 -6.44 -4.84 -8.23 0.40 -0.18-0.81
-funroll-all-loops 0.00 0.00 0.00 0.00 0.00 0.24 0.61 0.00 0.00 0.000.01
-fpeel-loops 0.00 0.00 0.00 1.39 0.00 0.36 1.36 0.00 0.00 0.120.07
all prologue using move -0.49 8.82 1.79 1.28 2.22 8.41 0.99 2.15 0.36 4.231.49
-fpic 0.65 -6.38 2.35 1.11 5.32 -3.71 13.13 2.23 6.58 3.475.21
-mcmodel=medium 0.00 9.45 2.17 7.98 5.43 10.44 11.27 5.24 23.48 6.7214.49

Table 11: 32-bit SPECint 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolf avg

1.06 -0.14 0.42 0.69 0.11 0.00 -0.13 0.20 -0.28 0.85 0.71 3.520.75
aggressive optimization 96.74 76.81 73.11 14.74 56.38 83.61 349.45 111.06 98.34 71.82 122.25 67.0989.12
-march=i386 to k8 5.23 8.41 3.45 0.17 9.02 6.80 82.00 -0.52 0.41 14.78 2.45 8.5210.08
-fbranch-probabilities 8.34 2.37 12.33 1.40 4.25 7.49 17.57 14.35 8.99 12.75 6.47 0.877.37
-fguess-branch . . .
-fbranch- 2.94 0.41 10.33 0.17 2.91 5.43 0.61 8.82 2.41 8.26 6.45 0.773.89

probabilities
-fomit-frame-pointer 8.64 1.36 0.84 0.17 2.26 6.51 0.73 0.41 4.58 2.66 6.25 3.783.26
-fgcse 1.99 1.52 -2.27 -0.69 0.57 -4.36 5.14 8.00 2.67 2.93 1.86 2.981.77
-finline-functions 0.90 1.96 0.00 2.84 2.91 6.62 1.86 0.82 1.41 3.34 1.87 1.782.17
-ftracer 0.15 1.94 4.58 -0.52 -0.34 -2.23 3.94 9.70 0.13 1.74 3.05 0.771.78
-fschedule-insns2 2.30 2.22 2.47 -0.35 2.32 0.15 0.12 1.87 -0.69 2.04 1.73 2.701.52
-funit-at-a-time -0.60 8.91 3.47 -0.18 2.55 -1.50 0.12 7.50 -1.10 1.83 0.28 -0.671.39
-freorder-blocks 1.99 0.68 7.88 -0.87 3.52 0.76 -0.37 1.24 -0.83 2.23 2.01 -1.001.26
-funroll-loops -0.31 -0.55 0.00 0.34 0.22 -1.79 6.77 0.72 0.69 2.71 1.14 3.531.25
-march=ppro to k8 5.91 -1.89 2.37 0.34 0.45 -4.22 2.63 0.30 1.11 0.38 2.75 2.601.13
-maccumulate- 0.60 -0.28 0.53 0.00 2.67 -2.08 5.95 2.62 0.27 4.06 1.00 -2.150.88

outgoing-args
-frename-registers -0.30 1.65 -0.94 -1.04 0.68 -2.67 -1.57 0.00 -0.14 2.74 0.85 5.490.75
-foptimize -0.16 0.27 2.24 0.34 -0.34 -1.93 -1.21 -0.11 0.69 1.93 0.56 0.110.25

sibling-calls
-fstrict-aliasing 1.07 -1.37 0.21 1.39 -0.12 0.00 0.12 0.10 0.55 0.09 0.71 0.550.25
-fstrength-reduce -0.16 0.54 -0.53 -1.04 0.57 -2.51 0.12 0.00 -1.10 -1.14 0.28 1.10-0.25
-funroll-all-loops 3.10 -0.28 0.31 -0.87 0.11 2.73 0.49 2.98 0.68 1.14 -0.15 1.981.00
-mfpmath=sse 1.83 2.32 1.28 -1.38 0.11 0.45 0.36 0.51 1.39 0.94 0.85 0.320.75
-ffast-math -0.31 1.09 0.63 0.34 -0.46 0.15 0.12 0.72 0.55 0.86 0.42 0.440.50
-fpeel-loops 2.29 0.00 -0.32 -0.52 0.90 3.17 0.00 0.10 -3.43 -0.29 0.70 -1.200.00
-fpic -20.49 -5.64 -17.55 -3.28 -29.60 -28.19 -10.27 -29.75 -23.00 -35.03 -25.65 -17.66-20.81

File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal

aggressive optimization -18.85 -6.25 3.51 -21.10 2.34 33.46 -4.21 -6.83 -22.83 -2.91 33.80 -22.33-4.05
-fbranch-probabilities -14.82 -8.93 -5.82 0.67 -1.96 -3.46 -5.89 -7.95 -14.56 -3.10 -11.81 -10.11-6.87
-fgcse 1.21 -1.15 -1.23 0.00 2.31 -0.93 0.20 0.52 0.21 0.51 -1.59 -1.60-0.28
-foptimize 0.07 0.11 0.09 0.00 0.07 0.00 -1.44 0.05 0.01 -0.03 -1.18 -0.02-0.14

sibling-calls
-fstrict-aliasing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00
-fstrength-reduce 0.21 0.09 0.02 0.00 0.05 -0.29 0.03 0.09 0.12 0.00 0.00 -0.190.02
-fschedule-insns2 -0.15 0.21 -0.07 0.00 -0.07 0.00 1.63 -0.02 -0.04 -0.01 0.00 0.030.15
-march=ppro to k8 -2.15 1.33 -0.40 0.00 -0.36 0.00 5.56 -0.29 -0.49 0.10 -1.18 0.310.40
-funroll-loops 3.06 0.81 0.32 0.00 1.16 2.91 0.08 0.21 0.88 0.08 2.31 0.310.48
-frename-registers 0.49 0.48 0.52 0.00 0.51 0.00 1.42 0.81 0.22 0.10 1.02 0.310.55
-freorder-blocks -0.08 -0.06 1.22 0.00 0.50 -0.03 0.17 0.82 0.29 0.10 0.53 0.220.62
-fomit-frame-pointer -1.77 2.89 0.39 0.00 -0.14 0.77 4.52 -0.79 0.17 2.38 -2.80 -0.110.95
-ftracer 0.00 1.33 1.78 0.00 4.56 2.91 0.31 2.07 1.71 2.56 0.29 0.311.80
-fbranch-probabilities 6.98 3.72 6.73 0.67 9.29 9.37 -0.26 4.48 3.81 4.67 6.41 2.354.93
-fguess-branch . . .
-maccumulate- 1.29 6.40 6.00 0.00 1.95 2.47 0.38 2.07 4.64 19.88 3.13 4.365.87

Table continues on next page. . .
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Table 11 Continued—File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal

outgoing-args
-funit-at-a-time -11.69 6.01 13.64 0.00 2.27 6.00 0.00 4.45 7.07 2.65 6.53 1.866.58
-march=i386 to k8 1.43 9.46 9.78 0.00 3.65 6.00 8.00 4.13 6.70 21.21 4.02 8.639.24
-finline-functions 10.90 8.91 28.84 0.00 3.79 39.55 0.16 13.26 10.95 4.65 50.44 2.3014.46
-ffast-math 0.00 -0.79 0.01 0.00 -0.02 0.00 0.00 -0.13 0.00 -1.23 0.00 -0.06-0.21
-funroll-all-loops 0.00 0.25 0.05 0.00 0.07 2.83 0.00 0.03 0.07 0.03 1.19 0.210.15
-fpeel-loops 2.19 1.15 0.39 0.00 2.81 6.13 0.00 0.21 0.88 0.02 1.25 1.610.72
-fpic 12.59 6.19 -4.89 0.00 14.80 -27.60 10.58 4.43 1.15 1.35 -21.21 9.830.84
-mfpmath=sse -0.08 1.15 -0.03 0.00 -0.06 0.00 10.10 0.17 0.00 0.00 1.19 -1.801.13

Table 12: 32-bit SPECfp 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsiavg

0.13 0.00 0.00 -0.21 0.28 2.57 -0.14 0.00 6.00 0.000.72
aggressive optimization 77.83 27.22 445.45 148.97 56.22 -30.46 92.25 101.18 122.37 156.0898.56
-march=i386 to k8 6.02 0.00 2.53 3.17 13.31 1.54 -0.65 1.49 -3.05 2.112.41
-fbranch-probabilities 3.49 0.39 4.74 4.28 0.72 1.81 -1.42 7.93 -2.16 0.201.66
-fguess-branch . . .
-fomit-frame-pointer -0.14 0.12 3.49 2.25 9.32 1.02 0.38 0.29 0.00 1.031.63
-march=ppro to k8 8.34 0.00 0.00 -0.82 10.41 -1.50 0.26 -0.59 -0.94 -0.621.10
-fstrength-reduce 10.13 -0.26 1.46 1.03 -8.02 -1.54 0.13 0.89 -0.32 3.640.91
-funroll-loops 3.93 0.00 0.00 0.61 -7.65 1.81 0.52 4.62 0.95 -0.210.36
-fstrict-aliasing 0.00 0.00 0.00 0.00 0.00 -1.27 -0.13 0.14 0.00 0.000.00
-frename-registers 0.81 0.12 -0.62 0.00 -5.69 -0.52 1.98 -0.15 0.63 0.62-0.19
-funit-at-a-time 0.13 0.00 0.00 0.00 -5.75 0.25 2.25 0.29 0.00 0.00-0.19
-ftracer 1.65 0.00 0.00 0.00 -6.54 0.51 0.39 2.26 -0.32 -0.82-0.37
-finline-functions 0.00 0.00 0.00 0.00 -7.14 3.70 1.85 -0.15 0.00 -0.21-0.37
-maccumulate- 2.20 0.00 0.20 0.20 -6.37 -0.76 -0.40 0.00 0.00 0.41-0.37

outgoing-args
-foptimize -0.27 0.00 0.00 0.00 -6.44 2.84 0.00 0.14 -0.32 0.00-0.37

sibling-calls
-fschedule-insns2 -0.54 0.13 1.04 2.72 -6.49 -0.26 -1.67 1.34 -6.48 1.04-0.72
-freorder-blocks 0.68 -0.13 0.20 0.00 -4.78 -1.52 -0.13 1.04 -1.55 -0.62-0.73
-fbranch-probabilities 1.78 0.00 -0.21 -2.80 0.00 -2.53 0.26 -1.17 -0.63 -2.23-0.91
-fgcse 2.21 -0.39 0.20 -2.40 -3.99 2.02 -0.13 -0.59 -10.68 0.20-1.43
-mfpmath=sse 2.43 0.25 3.29 -0.21 12.53 97.20 -0.14 1.47 13.20 3.3010.14
-ffast-math 1.21 0.25 0.00 2.04 3.13 -0.26 3.89 0.58 -0.95 3.091.44
-fpeel-loops 3.78 0.00 0.00 2.25 0.00 0.51 -0.26 0.00 0.00 0.000.54
-funroll-all-loops 0.00 0.12 0.00 0.00 0.00 -2.54 -0.26 0.14 0.00 0.00-0.19
-fpic -5.15 0.25 -3.72 3.46 -0.43 -1.31 -10.15 -2.36 -11.64 -1.45-3.10

File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal

aggressive optimization -3.88 -1.94 -20.88 -25.85 -23.54 14.89 -16.01 -17.99 -17.79 -11.69-18.60
-fbranch-probabilities 0.24 -2.71 0.69 -4.31 -14.27 -7.93 -4.87 -11.72 -4.35 -7.09-7.78
-fstrict-aliasing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00
-march=ppro to -march=k8 0.00 0.53 0.00 -4.45 1.81 0.77 0.10 0.41 -0.60 0.000.04
-funit-at-a-time 0.00 0.00 0.00 0.00 0.24 0.00 3.26 0.43 0.00 0.000.14
-freorder-blocks 0.00 0.00 0.00 0.04 0.15 -0.12 0.43 0.31 0.28 0.000.20
-foptimize 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.02 0.23 1.560.30

Table continues on next page. . .
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Table 12 Continued—File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal

sibling-calls
-frename-registers 0.00 0.26 0.00 0.04 0.25 0.33 0.65 0.02 0.61 0.000.38
-ftracer 7.98 0.00 0.00 0.00 0.07 0.44 0.76 5.35 0.00 1.440.66
-funroll-loops 5.15 6.26 0.00 1.15 0.06 7.76 1.21 0.43 0.07 2.480.57
-fgcse -1.84 3.89 0.00 -4.45 -0.79 0.11 0.54 0.09 2.85 -3.170.76
-fbranch-probabilities 10.49 6.75 0.69 1.60 -0.55 11.19 2.58 7.22 0.63 3.161.38
-fguess-branch . . .
-fschedule-insns2 0.00 0.81 0.00 1.44 0.63 0.66 1.32 3.68 2.53 2.071.90
-fomit-frame-pointer 2.10 1.60 0.00 4.64 2.24 0.00 0.54 4.52 1.22 9.282.41
-fstrength-reduce 0.00 -1.33 0.00 31.50 -0.04 -2.69 -0.22 -0.54 4.37 3.073.14
-finline-functions 0.00 0.00 0.00 0.00 6.28 13.54 6.74 1.95 1.85 3.973.23
-march=i386 to -march=k8 7.17 -4.61 0.00 1.44 6.05 0.55 0.87 -0.68 4.19 8.234.35
-maccumulate- 7.52 1.91 0.00 0.71 3.53 1.23 1.77 0.43 6.49 9.365.03

outgoing-args
-ffast-math 0.00 -0.81 0.00 0.23 -1.37 -31.41 -31.50 -6.71 -0.07 -0.78-1.89
-funroll-all-loops 0.00 0.00 0.00 0.00 0.00 0.11 0.65 0.00 0.00 0.000.01
-fpeel-loops 0.77 0.00 0.00 0.42 0.00 0.22 1.19 0.00 0.06 0.000.08
-fpic 4.90 -6.17 0.00 -25.58 9.63 -3.10 2.72 5.98 7.44 -0.105.74
-mfpmath=sse 4.04 7.23 0.00 10.72 2.53 7.29 8.28 15.12 8.83 6.817.33

Table 13: 64-bit SPECint 2000 with Aggressive Optimization (DEC Alpha EV56/600Mhz)

Performance (relative speedups in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolf avg

0.00 -0.66 0.71 0.00 1.63 0.00 0.60 0.00 8.02 5.84 -0.55 4.721.96
aggressive optimization 143.98 77.03 73.26 16.94 105.84 141.75 505.83 119.81 128.84 94.27 180.89 71.33115.27
-fschedule-insns2 16.23 10.00 1.51 2.20 11.18 2.75 20.56 8.84 2.87 3.78 15.38 5.638.08
-fschedule-insns
-funit-at-a-time 1.42 2.63 3.73 3.67 -2.83 28.33 18.57 16.66 0.00 16.42 3.52 5.517.63
-finline-functions 5.18 2.63 2.18 1.47 14.63 31.62 1.19 8.33 0.00 22.13 4.73 2.706.84
-fbranch-probabilities 1.45 7.58 6.06 2.22 15.47 27.50 5.03 14.00 2.08 -3.48 0.00 0.656.16
-fguess-branch . . .
-fbranch-probabilities 9.30 2.66 6.81 5.97 -4.33 29.66 -1.18 9.93 4.22 17.51 2.31 -0.665.44
-fschedule-insns2 7.87 6.16 3.75 0.72 7.69 -0.89 7.84 7.38 1.42 3.14 7.89 5.635.03
-fomit-frame-pointer 0.00 0.00 2.94 0.00 5.34 2.01 5.76 7.69 3.52 3.18 5.26 1.332.63
-freorder-blocks 0.71 0.00 2.15 0.00 14.10 1.31 -6.94 5.62 3.52 4.48 2.22 2.642.63
-fgcse 5.42 0.00 1.41 0.72 -1.02 -0.65 14.86 1.19 2.09 2.54 2.82 -0.661.94
-fif-conversion 2.96 5.47 0.00 2.20 4.97 0.65 13.15 0.00 2.08 3.20 -0.56 1.312.61
-fstrength-reduce -3.53 -1.28 1.44 2.18 -3.30 -0.65 22.30 -2.96 2.08 -1.87 2.27 4.081.97
-funroll-loops -1.42 0.00 2.18 0.00 22.29 0.00 3.65 -0.60 -1.37 1.87 0.00 -3.881.30
-fstrict-aliasing -2.88 4.08 -0.71 0.73 2.13 8.45 -16.97 4.34 4.25 3.16 4.59 0.650.65
-frename-registers 0.71 0.64 0.71 -0.72 5.40 0.66 5.73 2.40 0.68 -12.50 -1.11 3.440.65
-foptimize -2.12 0.00 0.71 -1.42 -14.80 -0.65 2.42 -2.49 0.68 1.86 1.11 -0.65-1.28

sibling-calls
-ftracer 0.00 -4.55 0.00 -2.16 -12.07 -0.65 3.06 -2.95 0.00 1.25 1.11 -7.10-2.59
-ffast-math -1.44 -3.73 -2.12 2.18 7.65 0.00 -1.78 -0.59 1.37 8.60 -0.55 1.321.29
-funroll-all-loops 0.70 -0.65 -2.78 0.72 2.59 1.30 5.16 4.40 0.00 -3.04 0.55 -3.250.00
-fpeel-loops 0.00 3.28 -0.71 -1.43 4.44 1.30 -3.51 -2.36 0.00 0.61 0.00 -1.300.00
-fold-unroll-loops 0.00 0.64 0.00 0.72 -4.62 1.31 10.71 3.03 -1.37 -2.54 -6.63 0.000.00
-fpic 0.00 -2.64 0.00 0.73 -13.23 3.63 -4.10 -0.65 -1.40 -3.71 5.48 -2.65-2.05

File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal

aggressive optimization -38.22 -29.20 -9.28 -42.75 -28.90 5.66 -49.91 -12.38 -36.23 -17.64 -3.00 -39.40-22.85
-fbranch-probabilities -10.66 -1.50 -2.43 0.79 -0.71 2.11 -4.12 -6.17 0.00 -3.29 -9.80 -5.73-3.09
-fomit-frame-pointer -10.98 -3.61 -1.53 0.00 -1.19 -3.23 -7.01 -2.35 -2.88 -2.10 -1.09 -3.01-2.64
-fgcse -0.25 -1.53 -1.07 0.00 -0.87 -1.56 -1.29 -0.48 0.08 0.01 -10.13 0.00-0.84

Table continues on next page. . .
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Table 13 Continued—File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal
-fstrict-aliasing 0.03 -1.22 0.00 0.00 -0.07 -0.28 0.26 -0.20 -0.53 -0.26 0.00 -3.01-0.28
-freorder-blocks -0.04 0.01 0.31 0.00 -0.43 0.01 -1.35 -0.23 -0.27 0.00 0.00 0.00-0.09
-foptimize 0.06 -0.01 0.23 0.00 0.00 0.01 -1.26 -0.04 0.10 0.00 0.00 0.00-0.02

sibling-calls
-frename-registers 0.06 -0.09 0.00 0.00 -0.10 0.02 0.08 -0.09 0.01 -0.03 0.00 0.00-0.02
-fif-conversion -0.10 -0.19 0.28 0.00 0.15 -0.21 -1.31 0.05 0.04 0.00 0.00 0.00-0.01
-fstrength-reduce 0.06 0.33 0.00 0.00 0.23 -0.48 0.05 0.06 0.20 0.01 0.01 0.000.04
-funroll-loops 0.06 0.00 0.27 0.00 0.12 0.34 0.00 0.05 0.00 0.00 0.00 0.000.12
-ftracer 0.04 0.63 2.22 0.00 3.66 5.31 0.11 2.09 -0.11 3.25 0.00 3.191.99
-funit-at-a-time -20.22 0.29 9.22 0.83 1.09 6.54 -4.12 4.22 0.00 -1.08 0.30 -2.993.12
-fbranch-probabilities 0.46 4.61 5.48 0.79 5.40 6.52 0.20 4.37 0.06 4.34 0.42 3.343.90
-fguess-branch . . .
-fschedule-insns2 0.00 4.24 4.73 0.00 3.87 0.00 5.63 3.53 4.29 3.47 0.00 3.414.06
-fschedule-insns2 0.00 4.42 5.01 0.00 3.87 0.00 7.14 4.76 5.25 4.69 0.00 3.414.76
-fschedule-insns
-finline-functions 0.47 8.20 23.93 0.79 3.89 43.62 -4.17 14.35 0.00 2.22 52.11 -2.8911.68
-ffast-math -0.31 -0.09 -0.01 -0.40 -0.06 -0.12 -0.04 -0.01 -0.07 -0.04 -0.12 -0.03-0.04
-funroll-all-loops 0.99 0.31 0.00 0.00 0.43 2.29 0.00 0.11 0.00 0.02 0.00 0.000.13
-fpeel-loops 12.32 0.57 0.03 0.00 2.11 6.22 0.00 0.18 0.00 0.04 0.22 0.000.49
-fpic -1.53 1.09 0.12 0.39 1.78 5.18 2.52 1.25 1.35 0.21 1.28 0.800.92
-fold-unroll-loops 12.39 8.85 -1.48 0.00 5.54 5.61 2.90 2.75 13.59 0.00 11.26 9.302.83

Table 14: 64-bit SPECfp 2000 with Aggressive Optimization (DEC Alpha EV56/600Mhz)

Performance (relative speedups in percent)
options wupwise swim mgrid applu mesa art equake ammp apsiavg

0.00 -0.75 -0.21 0.00 0.93 0.00 0.83 -0.84 -1.760.00
-fschedule-insns2 14.49 10.74 50.22 17.06 28.57 7.60 17.08 24.61 25.4121.69
-fschedule-insns
-fschedule-insns2 1.93 0.00 0.92 3.25 34.50 7.73 4.67 5.26 0.005.78
-fstrength-reduce 9.27 0.75 2.71 4.88 2.85 1.19 2.56 0.84 1.813.17
-fbranch-probabilities 3.12 0.00 1.44 1.33 14.21 7.10 3.41 -0.83 0.903.14
-fguess-branch . . .
-ftracer 1.85 0.00 1.02 0.20 8.54 1.14 0.82 0.84 6.792.36
-fbranch-probabilities 1.85 -0.75 -1.83 0.40 5.85 1.65 8.03 1.69 -1.741.56
-funit-at-a-time 2.48 0.74 -0.21 0.40 7.25 -1.68 10.00 2.56 -3.451.56
-fstrict-aliasing 0.00 0.00 -0.21 0.00 2.35 -6.56 9.00 0.84 0.900.77
-fomit-frame-pointer 2.48 -0.75 -0.41 0.00 4.34 -0.58 6.19 0.00 -0.880.77
-fgcse 0.60 0.00 0.00 -2.18 3.33 6.50 6.14 0.84 -2.610.76
-finline-functions 1.85 -0.75 -0.31 0.20 7.42 -9.40 2.56 0.84 -2.590.00
-freorder-blocks 0.00 -0.75 0.00 0.10 4.32 -5.24 6.14 -1.64 0.000.00
-frename-registers 0.60 -1.49 0.40 0.40 5.85 -1.66 0.82 0.84 -1.790.00
-foptimize -0.61 0.00 -1.42 0.10 2.35 -4.66 5.21 0.00 -1.760.00

sibling-calls
-fif-conversion 0.00 0.00 0.20 0.20 0.94 1.10 4.31 -0.84 -0.900.00
-funroll-loops 0.60 -2.99 -1.01 0.10 1.87 -3.98 0.83 0.00 -0.88-0.77
-fold-unroll-loops 6.66 -0.75 0.20 2.43 -36.75 3.48 -4.96 1.66 3.63-3.08
-ffast-math -0.60 0.00 0.10 0.30 -0.47 2.90 -5.47 -0.83 -2.59-0.76
-fpic 0.63 0.00 -0.21 0.20 -2.04 2.95 0.00 0.00 0.870.00
-funroll-all-loops 0.00 -0.75 0.71 0.70 0.00 7.55 -0.82 -4.17 -1.790.00
-fpeel-loops 3.63 0.00 0.20 6.06 0.00 4.06 -4.14 0.00 0.000.76
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File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp apsitotal

-fbranch-probabilities 0.37 -0.11 0.20 0.15 -7.43 -6.42 -0.06 -0.92 -2.47-4.77
-funit-at-a-time 0.37 -0.11 0.20 0.15 -7.37 -6.42 0.57 0.03 -2.47-4.61
-fomit-frame-pointer 0.00 -0.53 -1.53 -0.35 -3.45 -7.19 -2.12 -4.38 -1.30-2.96
-fgcse 0.00 -26.92 0.57 -8.87 -1.06 -7.19 0.25 -0.02 -0.74-1.93
-fstrict-aliasing 0.00 0.00 0.00 0.00 -0.31 -7.19 -2.17 -0.10 -0.15-0.44
-fif-conversion 0.00 -0.21 -0.09 -0.08 -0.22 -0.73 0.05 0.31 -0.03-0.11
-foptimize 0.00 0.00 0.00 0.00 -0.04 0.00 -0.06 -0.01 0.00-0.02

sibling-calls
-freorder-blocks 0.00 0.10 0.00 0.02 0.28 -0.19 0.11 -0.43 -0.200.07
-funroll-loops 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.020.00
-frename-registers 0.00 0.10 0.16 -0.08 0.13 0.18 0.22 0.11 -0.320.05
-finline-functions 0.37 0.20 0.28 0.13 -0.74 19.29 8.46 1.21 -1.870.09
-ftracer 8.22 0.00 0.08 0.02 0.22 0.55 0.22 1.01 1.720.79
-fbranch-probabilities 9.36 0.84 1.36 -1.20 0.00 2.79 0.97 4.33 1.801.17
-fguess-branch . . .
-fstrength-reduce 7.50 2.68 3.28 7.17 -0.17 0.00 0.22 0.37 7.241.70
-fschedule-insns2 3.87 2.47 3.73 6.90 5.47 3.11 4.91 5.97 6.535.64
-fschedule-insns2 3.78 2.47 4.26 11.04 5.55 3.11 5.66 5.97 6.976.25
-fschedule-insns
-fpic -1.98 -0.42 0.24 -2.57 -0.09 2.76 1.10 -1.06 -0.08-3.83
-ffast-math -0.21 -2.00 -1.05 -0.97 0.27 0.30 -0.60 -0.76 -0.61-0.17
-fpeel-loops 0.00 0.00 0.00 0.90 0.00 7.73 2.60 0.00 0.000.30
-funroll-all-loops 0.00 0.00 0.81 0.29 0.00 7.73 1.13 0.37 0.270.34
-fold-unroll-loops 2.71 36.40 15.56 5.15 4.52 23.73 6.75 15.75 8.917.79
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