SIPPING Working Group V. Hilt Internet-Draft Bell Labs/Alcatel-Lucent Expires: August 13, 2007 G. Camarillo Ericsson J. Rosenberg Cisco Systems February 9, 2007 A Framework for Session Initiation Protocol (SIP) Session Policies draft-ietf-sip-session-policy-framework-01 Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. This Internet-Draft will expire on August 13, 2007. Copyright Notice Copyright (C) The IETF Trust (2007). Abstract Proxy servers play a central role as an intermediary in the Session Initiation Protocol (SIP) as they define and impact policies on call routing, rendezvous, and other call features. This document specifies a framework for SIP session policies that provides a standard mechanism by which a proxy can define or influence policies Hilt, et al. Expires August 13, 2007 [Page 1] Internet-Draft Session Policy Framework February 2007 on sessions, such as the codecs or media types to be used. It defines a model, an overall architecture and new protocol mechanisms for session policies. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. Session-Independent Policies . . . . . . . . . . . . . . . . . 5 3.1. Architecture and Overview . . . . . . . . . . . . . . . . 5 3.2. Policy Subscription . . . . . . . . . . . . . . . . . . . 6 4. Session-Specific Policies . . . . . . . . . . . . . . . . . . 7 4.1. Architecture . . . . . . . . . . . . . . . . . . . . . . . 7 4.2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.3.1. Offer in Request . . . . . . . . . . . . . . . . . . . 10 4.3.2. Offer in Response . . . . . . . . . . . . . . . . . . 13 4.4. UA/Policy Server Rendezvous . . . . . . . . . . . . . . . 14 4.4.1. UAC Behavior . . . . . . . . . . . . . . . . . . . . . 14 4.4.2. Proxy Behavior . . . . . . . . . . . . . . . . . . . . 17 4.4.3. UAS Behavior . . . . . . . . . . . . . . . . . . . . . 18 4.4.4. Caching the Local Policy Server URI . . . . . . . . . 18 4.4.5. Storing Session Policy Server URIs . . . . . . . . . . 19 4.4.6. Contacting the Policy Server . . . . . . . . . . . . . 19 4.4.7. Header Definition and Syntax . . . . . . . . . . . . . 20 4.5. Policy Channel . . . . . . . . . . . . . . . . . . . . . . 22 5. Security Considerations . . . . . . . . . . . . . . . . . . . 22 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 24 6.1. Registration of the "Policy-Id" Header . . . . . . . . . . 24 6.2. Registration of the "Policy-Contact" Header . . . . . . . 24 6.3. Registration of the "policy" SIP Option-Tag . . . . . . . 24 Appendix A. Acknowledgements . . . . . . . . . . . . . . . . . . 24 Appendix B. Session-Specific Policies - Call Flows . . . . . . . 25 B.1. Offer in Invite . . . . . . . . . . . . . . . . . . . . . 25 B.2. Offer in Response . . . . . . . . . . . . . . . . . . . . 27 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.1. Normative References . . . . . . . . . . . . . . . . . . . 28 7.2. Informative References . . . . . . . . . . . . . . . . . . 28 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 29 Intellectual Property and Copyright Statements . . . . . . . . . . 30 Hilt, et al. Expires August 13, 2007 [Page 2] Internet-Draft Session Policy Framework February 2007 1. Introduction The Session Initiation Protocol (SIP) [6] is a signaling protocol for creating, modifying and terminating multimedia sessions. A central element in SIP is the proxy server. Proxy servers are intermediaries that are responsible for request routing, rendezvous, authentication and authorization, mobility, and other signaling services. However, proxies are divorced from the actual sessions - audio, video, and messaging - that SIP establishes. Details of the sessions are carried in the payload of SIP messages, and are usually described with the Session Description Protocol (SDP) [7]. Indeed, SIP provides end-to-end encryption features using S/MIME, so that all information about the sessions can be hidden from eavesdroppers and proxies alike. However, experience has shown that there is a need for SIP intermediaries to impact aspects of a session. For example, SIP may be used in a wireless network, which has limited resources for media traffic. During periods of high activity, the wireless network provider wants to restrict the amount of bandwidth available to each individual user. With session policies, an intermediary in the wireless network can inform the user agent about the bandwidth it can currently count on. This information enables the user agent to make an informed decision about the number of streams, the media types, and the codecs it can successfully use in a session. Similarly, a network provider may have a service level agreement with a user that defines the set of media types a user can use. With session policies, the network can convey the current set of policies to user agents, enabling them to set up sessions without inadvertently violating any of the network policies. In another example, a SIP user agent is using a network which is connected to the public Internet through a firewall or a network border device. The network provider would like to tell the user agent that it needs to send its media streams to a specific IP address and port on the firewall or border device to reach the public Internet. Knowing this policy enables the user agent to set up sessions across the firewall or the network border. In contrast to other methods for inserting a media intermediary, the use of session policies does not require the inspection or modification of SIP message bodies. Domains often enforce the session policies they have in place. For example, a domain might have a policy that disallows the use of video and may enforce this policy by dropping all packets that contain a video encoding. Unfortunately, enforcement mechanisms usually do not inform the user about the policies they are enforcing. Instead, they silently keep the user from doing anything against them. This may Hilt, et al. Expires August 13, 2007 [Page 3] Internet-Draft Session Policy Framework February 2007 lead to a malfunctioning of devices that is incomprehensible to the user. With session policies, the user knows about the current network policies and can set up policy-compliant sessions or simply connect to a domain with less stringent policies. Thus, session policies provide an important combination of consent coupled with enforcement. That is, the user becomes aware of the policy and needs to act on it, but the provider still retains the right to enforce the policy. Two types of session policies exist: session-specific policies and session-independent policies. Session-specific policies are policies that are created for one particular session, based on the session description of this session. They enable a network intermediary to examine the session description a UA is proposing and to return a policy specifically for this session description. For example, an intermediary could open pinholes in a firewall/NAT for each media stream in a session and return a policy that replaces the internal IP addresses and ports with external ones. Since session-specific policies are tailored to a session, they only apply to the session they are created for. Session-specific policies are created on a session-by-session basis at the time the session is established. Session-independent policies on the other hand are policies that are created independent of a session and generally apply to all SIP sessions set up by a user agent. A session-independent policy can, for example, be used to inform user agents about an existing bandwidth limit or media type restrictions. Since these policies are not based on a specific session description, they can be created independent of an attempt to set up a session and only need to be conveyed to the user agent when it initializes (e.g. at the time the device is powered on) and when the policies are changed. This specification defines a framework for SIP session policies. It specifies a model, the overall architecture and new protocol mechanisms that are needed for session-independent and session- specific policies. 2. Terminology In this document, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119 [1] and indicate requirement levels for compliant implementations. Hilt, et al. Expires August 13, 2007 [Page 4] Internet-Draft Session Policy Framework February 2007 3. Session-Independent Policies Session-independent policies are policies that are created independent of a session and generally apply to all sessions a user agent is setting up. They typically remain stable for a longer period of time and apply to any session set up while they are valid. However, session-independent policies may also change over time. For example, a policy that defines a bandwidth limit for a user may change during the day, defining a lower limit during peak hours and allow more bandwidth off-peak. 3.1. Architecture and Overview +-------------+ /------| policy | +----+ / | server 1 | | |---/ +-------------+ | UA | ... | |---\ +-------------+ +----+ \ | policy | \------| server n | +-------------+ Figure 1 A SIP UA may receive session-independent policies from one or more policy servers. In a typical configuration, a UA receives session- independent policies from a policy server in the access or local network domain (i.e. the domain from which the UA receives IP service) and possibly the home network domain (i.e. the domain the UA registers at). The local network may have policies that support the access network infrastructure. For example, in a wireless network where bandwidth is scarce, a provider may restrict the bandwidth available to an individual user. The home network may have policies that are needed to support services or policies that reflect the service level agreement with the user. Thus, in most cases, a UA will receive session-independent policies from one or two policy servers. Setting up session-independent policies involves the following steps: 1. A user agent requests session-independent policies from the policy servers in the local network and home domain. A user agent typically requests these policies when it starts up or connects to a new network domain. Hilt, et al. Expires August 13, 2007 [Page 5] Internet-Draft Session Policy Framework February 2007 2. The policy server selects the policies that apply to this user agent. The policy server may have general policies that apply to all users or maintain separate policies for each individual user. The selected policies are returned to the user agent. 3. The policy server may update the policies, for example, when network conditions change. 3.2. Policy Subscription A UA requests session-independent policies by subscribing to session- independent policies on the policy server in a domain. Subscriptions to session-independent policies are established using the "ua- profile" event package defined in the Framework for SIP User Agent Profile Delivery [4]. The "ua-profile" event package [4] provides a mechanism to discover policy servers in the local network and the home domain. The "local- network" profile-type enables a UA to discover a policy server in the local domain. The "user" profile type enables the discovery of a policy server in the home domain. A UA compliant to this specification SHOULD attempt to discover and subscribe to the policy servers in these two domains. A UA SHOULD (re-)subscribe to session-independent policies when the following events occur: o The UA registers a new address-of-record (AoR) or removes a AoR from the set of AoRs it has registered. In these cases, the UA SHOULD establish subscriptions for each new AoR using the "user" and the "local-network" profile-types. The UA SHOULD terminate all subscriptions for AoRs it has removed. o The UA changes the domain it is connected to. The UA SHOULD terminate all existing subscriptions for the "local-network" profile-type. It SHOULD then create a new subscription for each AoR using the "local-network" profile-type. This way, the UA stops receiving policies from the previous local domain and starts to receive the policies of the new local domain. The UA does not need to change the subscriptions for "user" profiles. If a subscriber is unable to establish a subscription, it SHOULD NOT attempt to re-try this subscription, unless one of the above events occurs again. This is to limit the number of SUBSCRIBE requests sent within domains that do not support session-independent policies. A UA compliant to this specification MUST support the User Agent Profile Data Set for Media Policy [3]. To indicate that the UA wants to receive session-independent policies, it includes the MIME type "application/session-policy+xml" in the Accept header of a SUBSCRIBE Hilt, et al. Expires August 13, 2007 [Page 6] Internet-Draft Session Policy Framework February 2007 request. A policy server MAY send a notification to the subscriber every time the session-independent policies covered by the subscription change. The definition of what causes a policy to change is at the discretion of the administrator. A change in the policy may be triggered, for example, by a change in the network status, by the change in the time of day or by an update of the service level agreement with the customer. The session-independent policies contained in a notification MUST represent a complete session-independent policy. Deltas to previous policies or partial policies are not supported. 4. Session-Specific Policies Session-specific policies are policies that are created specifically for one particular session of a UA. Thus, session-specific policies will typically be different for different sessions. The session- specific policies for a session may change during the course of the session. For example, a user may run out of credit during a session, which will cause the network to disallow the transmission all media streams from this point on. 4.1. Architecture domain 1 +-----------+ /------| proxy |----... +----+ / +-----------+ | |---/ +-----------+ | | | policy | | UA |============| server | | | +-----------+ | |**** +-----------+ +----+ * | policy | *******|enforcement|****... +-----------+ --- SIP Signaling === Policy Channel *** Media Figure 2 The following entities are needed for session-specific policies (see Figure 2): a user agent (UA), a proxy, a policy server and possibly a policy enforcement entity. Hilt, et al. Expires August 13, 2007 [Page 7] Internet-Draft Session Policy Framework February 2007 The role of the proxy is to provide a rendezvous mechanism for UAs and policy servers. It ensures that each UA has the URI of the policy server in its domain and knows where to retrieve policies from. The proxy conveys the policy server URI to UAs in case they have not yet received it (e.g. in a previous call or through other means such as configuration). The proxy does not deliver the actual policies to UAs. The policy server is a separate logical entity that may be physically co-located with the proxy. The role of the policy server is to deliver session policies to UAs. The policy server receives session information from the UA, uses this information to determine the policies that apply to the session and returns these policies to the UA. The mechanism for generating policies (i.e. making policy decisions) is outside of the scope of this specification. A policy server may, for example, query an external entity to get policies or it may directly incorporate a policy decision point and generate policies locally. A UA receives the URI of a policy server from a proxy. It uses this URI to contact the policy server. It provides information about the current session to the policy server and receives session policies in response. The UA may also receive policy updates from the policy server during the course of a session. A network may have a policy enforcement infrastructure in place. However, this specification does not make any assumptions about the enforcement of session policies and the mechanisms defined here are orthogonal a policy enforcement infrastructure. Their goal is to provide a mechanism to convey session information to a policy server and to return the policies that apply to a session to the UA. In principle, each domain that is traversed by SIP signaling messages can define session-specific policies for a session. Each domain needs to run a policy server and a proxy that is able to rendezvous a UA with the policy server (as shown in Figure 2). However, it is expected that session-specific policies will often only be provided by the local domain of the user agent. 4.2. Overview The protocol defined in this specification clearly separates SIP signaling and the exchange of policies. SIP signaling is only used to rendezvous the UA with the policy server. From this point on, UA and policy server communicate directly with each other over a separate policy channel. This is opposed to a piggyback model, where the exchange of policy information between endpoint and a policy server in the network is piggybacked onto the SIP signaling messages Hilt, et al. Expires August 13, 2007 [Page 8] Internet-Draft Session Policy Framework February 2007 that are exchanged between endpoints. The main advantage of using a separate policy channel is that it decouples the exchange of signaling messages between endpoints from the exchange of policies between endpoint and policy server. This decoupling has a number of desirable properties. It enables the use of separate encryption mechanisms on the signaling path to secure the communication between endpoints, and on the policy channel to secure the communication between endpoint and policy server. Policies can be submitted directly from the policy server to the endpoint and never travel along the signaling path, possibly crossing many domains. Endpoints set up a separate policy channel to each policy server and can specifically decide which information they want to disclose to which policy server. Finally, policy servers do not need to rely on a SIP signaling message flowing by to send policies or policy updates to an endpoint. A policy server can use the policy channel at any time to update session policies as needed. A disadvantage of the separate channel model is that it requires additional messages for the exchange of policy information. Following this model, signaling for session-specific policies involves the following two fundamental tasks: 1. UA/policy server rendezvous: a UA setting up a session needs to be able to discover the policy servers that are relevant to this session. 2. Policy channel: once the UA has discovered the relevant policy servers for a session, it needs to connect to these servers, disclose session information and retrieve the policies that apply to this session. The setting up session-specific policies over the policy channel involves the following steps: 1. A user agent submits information about the session it is trying to establish to the policy server and asks whether a session using these parameters is permissible. 2. The policy server generates a policy decision for this session and returns the decision to the user agent. Possible policy decisions are (1) to deny the session, (2) to propose changes to the session parameters with which the session would be acceptable, or (3) to accept the session as it was proposed. 3. The policy server can update the policy decision at a later time. A policy decision update can, for example, propose additional changes to the session (e.g. change the available bandwidth) or deny a previously accepted session (i.e. disallow the continuation of a session). Hilt, et al. Expires August 13, 2007 [Page 9] Internet-Draft Session Policy Framework February 2007 In many cases, the mechanism for session-specific policies will be used to disclose session information and return session policies. However, some scenarios may only involve the disclosure of session information to a network intermediary. If an intermediary does not intend to return a policy, it can simply accept the session as it was proposed. Similarly, some session-specific policies only apply to the offer (and therefore only require the disclosure of the offer) whereas others apply to offer and answer. Both types of policies are supported by session-specific policy mechanism. 4.3. Examples This section provides two examples to illustrate the overall operation of session-specific policies. The call flows depict the rendezvous mechanism between UA and policy server and indicate the points at which the UA exchanges policy information with the policy server. The example is based on the following scenario: there are two domains (domain A and domain B), which both have session-specific policies for the UAs in their domain. Both domains do not provide policies to the UAs outside of their domain. The two domains have a proxy (P A and P B) and a policy server (PS A and PS B). The policies in both domains involve the session description offer and answer. 4.3.1. Offer in Request The first call flow shown in Figure 3 depicts an INVITE transaction with the offer in the request. It is assumed that this is the first INVITE request the UAC creates in this domain and that it therefore does not have previous knowledge about the policy server URIs in this domain. (1) UA A sends an INVITE to proxy P A. P A knows that policies apply to this session and (2) returns a 488 to UA A. P A includes the URI of PS A in the 488 response. This step is needed since the UAC has no prior knowledge about the URI of PS A. (3) UA A uses the URI to contact PS A, discloses the session description offer to PS A and (4) receives policies for the offer. (5) UA A reformulates the INVITE request under consideration of the received policies and includes a Policy-Id header to indicate that it has already contacted PS A. P A does not reject the INVITE this time and removes the Policy-Id header when forwarding the INVITE. P B adds a Policy-Contact header containing the URI of PS B. (6) UA B uses this URI to contact PS B and discloses the offer and the answer it is about to send. (7) UA B receives policies from PS B and applies them to the offer and answer respectively. (8) UA B returns the updated answer in the 200 OK. (9) UA A contacts PS A with the answer and (10) retrieves answer policies Hilt, et al. Expires August 13, 2007 [Page 10] Internet-Draft Session Policy Framework February 2007 from PS A. Hilt, et al. Expires August 13, 2007 [Page 11] Internet-Draft Session Policy Framework February 2007 UA A P A P B UA B | | | | | INVITE offer | | | |---------------->| | | (1) | 488 | | | | + Policy-Contact| | | |<----------------| | | (2) | ACK | | | |---------------->| | | | | PS A | | | | | | | PolicyChannel | | | | + InfoOffer | | | |------------------->| | | (3) | PolicyChannel | | | | + PolicyOffer | | | |<-------------------| | | (4) | | | | | | | | | INVITE offer' | INVITE offer' | INVITE offer | | + Policy-Id | | + Policy-Contact| |---------------->|--------------->|---------------->| (5) | | | | | | PS B | | | | | | | | | PolicyChannel | | | | + InfoOffer | | | | + InfoAnswer | | | |<-------------------| (6) | | | PolicyChannel | | | | + PolicyOffer | | | | + PolicyAnswer | | | |------------------->| (7) | | | | | | | | | OK answer | OK answer | OK answer | |<----------------|<---------------|<----------------| (8) | ACK | |--------------------------------------------------->| | | | | | | | | | PolicyChannel | | | | + InfoAnswer | | | |------------------->| | | (9) | PolicyChannel | | | | + PolicyAnswer | | | |<-------------------| | | (10) | | | | Hilt, et al. Expires August 13, 2007 [Page 12] Internet-Draft Session Policy Framework February 2007 Figure 3 4.3.2. Offer in Response The call flow shown in Figure 4 depicts an INVITE transaction with the offer in the response. (1) UA A sends an INVITE without an offer to proxy P A and (2) P A returns a 488 response containing the URI of PS A. (3) and (4) UA A uses this policy server URI to set up the policy channel. At this time, UA A does not disclose a session description since it does not have the offer yet. (5) UA A re-sends the INVITE request and includes a Policy-Id header to indicate that it has contacted PS A. P A does not reject the INVITE this time and removes the Policy-Id header when forwarding the INVITE. P B adds a Policy-Contact header containing the URI of PS B. (6) UA B uses this URI to discloses the offer to PS B. (7) UA B receives policies from PS B and applies them to the offer. (8) UA B returns the updated offer the 200 OK. (9) and (10) UA A contacts PS and discloses the offer and the answer it is about to send. An important difference to the flow in the previous example is that UA A performs steps (9) and (10) before returning the answer in step (11). This enables UA A to return the final answer in the ACK, which includes all applicable policies. However, it requires that PS A immediately returns a policy to avoid a delay in the transmission of the ACK. (12) and (13) UA B also sends the answer to PS B and applies the policies it receives to the answer before using it. UA A P A P B UA B | | | | | INVITE | | | |---------------->| | | (1) | 488 | | | | + Policy-Contact| | | |<----------------| | | (2) | ACK | | | |---------------->| | | | | PS A | | | | | | | PolicyChannel | | | |------------------->| | | (3) | PolicyChannel | | | |<-------------------| | | (4) | | | | | | | | | INVITE | INVITE | INVITE | | + Policy-Id | | + Policy-Contact| |---------------->|--------------->|---------------->| (5) | | | | Hilt, et al. Expires August 13, 2007 [Page 13] Internet-Draft Session Policy Framework February 2007 | | PS B | | | | | | | | | PolicyChannel | | | | + InfoOffer | | | |<-------------------| (6) | | | PolicyChannel | | | | + PolicyOffer | | | |------------------->| (7) | | | | | | | | | OK offer | OK offer | OK offer | |<----------------|<---------------|<----------------| (8) | | | | | | | | | PolicyChannel | | | | + InfoOffer | | | | + InfoAnswer | | | |------------------->| | | (9) | PolicyChannel | | | | + PolicyOffer | | | | + PolicyAnswer | | | |<-------------------| | | (10) | | | | | ACK answer | |--------------------------------------------------->| (11) | | | | | | | | | | | PolicyChannel | | | | + InfoAnswer | | | |<-------------------| (12) | | | PolicyChannel | | | | + PolicyAnswer | | | |------------------->| (13) | | | | Figure 4 4.4. UA/Policy Server Rendezvous The first step in setting up session-specific policies is to rendezvous the UAs with the relevant policy servers. This is achieved by providing the URIs of all policy servers relevant for a session to the UAs. 4.4.1. UAC Behavior A UAC compliant to this specification MUST include a Supported header field with the option tag "policy" into all requests that can Hilt, et al. Expires August 13, 2007 [Page 14] Internet-Draft Session Policy Framework February 2007 initiate an offer/answer exchange [8] (e.g. INVITE, UPDATE and PRACK requests). The UA MUST include the "policy" option tag into these requests even if the particular request does not contain an offer or answer (e.g. an INVITE request without an offer). A UAC may receive a 488 response that contains a Policy-Contact header field. The Policy-Contact header is a new header defined in this specification. It contains the URI of a policy server. A 488 response with this header is generated by a proxy to convey the URI of the local policy server to the UAC. After receiving a 488 response with a Policy-Contact header, a UAC compliant to this specification needs to decide if it wants to continue with the session now knowing that there is a policy server. If the UAC decides to continue, it MUST use the policy server URI to contact the policy server using mechanism defined in Section 4.5. After receiving policies from the policy server, the UAC decides if it wants to accept these policies or not. If it accepts these policies, it MUST apply them to the current request and resend the updated request. If no changes are required by policies or no policies have been received, the request can be resend without any policy-induced changes. If the UAC decides that the list of policy servers or the received session policies are unacceptable, it MUST NOT resend the request. The UAC MUST insert a Policy-Id header into a request if it has contacted a policy server and accepted the policies received for this request. The Policy-Id header is a new header that is defined in this specification. The UA MUST create a Policy-Id header value for each policy server involved in the preparation of a request. A Policy-Id header value contains two pieces of information: the policy server URI and an optional token. The policy server URI is the URI the UA has used to contact the policy server. The token is an opaque string the UAC may have received from the policy server after contacting it. If the UA has received a token from the policy server it MUST include the token in the Policy-Id header. The format of the Policy-Id header is defined in Section 4.4.7. The Policy-Id header serves two main purposes: first and most importantly, it enables a proxy to determine if the UAC already knows the URI of its policy server. A proxy can pass through a request if the URI of its policy server is included in the Policy-Id header. If the policy server URI is not yet known to the UAC, the proxy can convey this URI to the UAC by rejecting the request with a 488 response. The second purpose of the Policy-Id header is to enable a domain to route all requests that belong to the same session (i.e. the initial request and requests a UA retransmits after contacting the policy Hilt, et al. Expires August 13, 2007 [Page 15] Internet-Draft Session Policy Framework February 2007 server) to the same proxy and policy server. This is important if a domain has multiple proxy/policy server combinations (e.g. in a proxy/policy server farm that receives requests through a load balancer) and the proxies/policy servers create per-session state in the network. An example for such a scenario is a policy server that is associated with a session border device. The policy server configures the session border device after receiving a session description from the UAC via the policy channel. Retransmitted requests for such a session need to be routed to the same proxy/ policy server as the initial request since this proxy/policy server combination that has configured the associated border device for the session. Routing requests that belong to the same session to the same proxy can be achieved by using the Policy-Id header token. It requires that the policy server returns a token to the UAC that uniquely identifies the specific proxy/policy server combination. The UAC includes this token in the Policy-Id header and it can be used (together with the policy server URI) by proxies in this domain to route the request along the desired path. The format of this token does not require standardization. The only requirement is that the token provides sufficient information for proxies to route the message inside a domain to the desired proxy/policy server. The token can, for example, be a numeric identifier or an IP address. Note: it has been proposed to use the Policy-Id header to provide a hint for a proxy that the UAC has actually contacted the policy server. This usage also requires the policy server to return a token to the UA. In addition, the policy server needs to share valid tokens with the proxy. After receiving a request with a Policy-Id header, the proxy can determine if the token in the Policy-Id header is valid. If it is valid, the proxy knows that the UA has contacted the policy server for this session. However, it is important to note that this token does not provide any proof that the UA has actually used the policies it has received from the policy server. A malicious UA may simply contact the policy server, discard all policies it receives but still use the token in the Policy-Id header. In some cases, a request may traverse multiple domains with session- policies in place. Each of these domains may return a 488 response containing a policy server URI. Since the UAC contacts a policy server after receiving a 488 response from a domain and before re- sending the request, session policies are always applied to a request in the order in which the request traverses through the domains. The UAC MUST NOT change this implicit order among policy servers. A UAC frequently needs to contact the policy server in the local Hilt, et al. Expires August 13, 2007 [Page 16] Internet-Draft Session Policy Framework February 2007 domain before sending a new request. To avoid the retransmission of the local policy server URI in a 488 for each new request, a UA SHOULD maintain a cache that contains the URI of the local policy server (see Section 4.4.4). The UAC SHOULD use the cached policy server URI to contact the local policy server before sending the initial request that starts an offer/answer exchange (e.g. an INVITE request). A UA may decide to change the session description of a session and to initiate subsequent offer/answer exchanges (e.g. using INVITE, UPDATE or PRACK requests) to re-negotiate the session description. When creating such a mid-dialog request, a UA SHOULD contact the same policy servers it has contacted during the initial offer/answer exchange (see Section 4.4.5) before sending the request. This avoids the retransmission of all policy server URIs in 488 responses for mid-dialog requests. 4.4.2. Proxy Behavior A proxy provides rendezvous functionality for UAs and a policy server. This is achieved by conveying the URI of a policy server to the UAC or the UAS (or both) when processing INVITE, UPDATE or PRACK requests (or any other request that can initiate an offer/answer exchange). If such a request contains a Supported header field with the option tag "policy", the proxy MAY reject the request with a 488 response to provide the local policy server URI to the UAC. Before rejecting a request, the proxy MUST verify that the request does not contain a Policy-Id header field, which has the local policy server URI as a value. If the request does not contain such a header or the local policy server URI is not present in this header, then the proxy MAY reject the request with a 488. The proxy MUST insert a Policy- Contact header in the 488 response that contains the URI of its associated policy server. The proxy MAY add the header field parameter "non-cacheable" to prevent the UAC from caching this policy server URI (see Section 4.4.4). If the local policy server URI is present in a Policy-Id header value of a request, then the proxy MUST NOT reject the request as described above (it may still reject the request for other reasons). The proxy SHOULD remove the Policy-Id header value for this policy server from the Policy-Id header field before forwarding the request. This value only increases message size and is not relevant to other proxies on the path. It also would disclose the policy server URI to subsequent proxies. The proxy MAY insert a Policy-Contact header field into INVITE, Hilt, et al. Expires August 13, 2007 [Page 17] Internet-Draft Session Policy Framework February 2007 UPDATE or PRACK requests (or any other request that can initiate an offer/answer exchange) in order to convey the policy server URI to the UAS. If the request already contains a Policy-Contact header field, the proxy MUST insert the URI ahead of all existing values at the beginning of the list. A proxy MUST NOT change the order of existing Policy-Contact header values. 4.4.3. UAS Behavior A UAS may receive an INVITE, UPDATE or PRACK request (or another request that can initiate offer/answer exchanges), which contains a Policy-Contact header filed with a list of policy server URIs. A UAS that receives such a request needs to decide if it wants to accept the session knowing that there are policy servers involved. If it accepts, it MUST contact all policy server URIs in a Policy-Contact header. The UAS MUST contact the policy server URIs in the order in which they were contained in the Policy-Contact header, starting with the topmost value. If a UAS decides that it does not want to accept a session because there are policy servers involved or because one of the session policies received from a policy server is not acceptable, the UAS MUST reject the request with a 488 response. A UAS may receive a token from a policy server via the policy channel. Since the UAS does not create a Policy-ID header, it can simply ignore this token. 4.4.4. Caching the Local Policy Server URI A UAC may frequently need to contact the policy server in the local domain before sending a request. To avoid the retransmission of the local policy server URI for each new request, a UA SHOULD maintain a cache that contains the URI of the local policy server. A UA may receive this URI in a Policy-Contact header of a request or a 488 response. The UA may also receive the local policy server URI through configuration, for example, via the configuration framework [4]. If a UA has received a local policy server URI through configuration and receives another local policy server URI in a Policy-Contact header, it SHOULD overwrite the configured URI with the most recent one received in a Policy-Contact header. Domains can prevent a UA from caching the local policy server URI. This is useful, for example, if the policy server does not need to be involved in all sessions or the policy server URI changes from session to session. A proxy can mark the URI of such a policy server as "non-cacheable". A UA MUST NOT cache a non-cacheable policy server URI. It SHOULD remove the current URI from the cache when Hilt, et al. Expires August 13, 2007 [Page 18] Internet-Draft Session Policy Framework February 2007 receiving a local policy server URI that is marked as "non- cacheable". This is to avoid the use of policy server URIs that are outdated. The UA SHOULD NOT cache policy server URIs it has received from proxies outside of the local domain. These policy servers may not be relevant for subsequent sessions, which may go to a different destination, traversing different domains. The UA MUST NOT cache tokens it may receive from a policy server. A token is only valid for one request. 4.4.5. Storing Session Policy Server URIs A UA discovers the list of policy servers relevant for a session during the initial offer/answer exchange. It SHOULD store this list of policy server URIs, as part of the dialog state. The UA SHOULD maintain this list until the session is terminated. It SHOULD store policy server URIs in this list even if they are marked as "non- cacheable". The non-cacheable parameter only refers to caching policy server URIs for re-use between sessions. If a UAC has contacted all stored policy servers before sending a mid-dialog request and receives a 488 in response to this request with a Policy-Contact header containing a new policy server URI, it MUST discard the stored policy server URI list for the current dialog. Receiving a 488 response at this point indicates that the set of policy servers relevant for the current dialog has changed. The UAC SHOULD retry sending the request as if it was the first request in a dialog (i.e. without applying any policies except policies from the local policy server). This way, the UAC will re- discover the list of policy server URIs relevant for the current request. If a UAS receives a mid-dialog request with a Policy-Contact header containing a list of policy server URIs that is different from the list stored for the dialog, then the UAS SHOULD replace the stored list with the one received in the Policy-Contact header field. 4.4.6. Contacting the Policy Server A UA compliant to this specification MUST contact the discovered policy servers and apply session policies to an offer or answer before using the offer or answer. If the UA does not want to contact the policy servers provided or the policies received for a session are unacceptable, it MUST NOT continue with the session. This means that, the UA MUST cancel or reject a pending INVITE transaction for the session or terminate the session if it is already in progress. Hilt, et al. Expires August 13, 2007 [Page 19] Internet-Draft Session Policy Framework February 2007 A UA that receives a SIP message containing an offer or answer SHOULD completely process the message (e.g. according to [6]) before contacting the policy server. The SIP processing of the message includes, for example, updating dialog state and timers as well as creating ACK or PRACK requests as necessary. This ensures that contacting a policy server does not interfere with SIP message processing and timing (e.g. by inadvertently causing timers to expire). This implies, for example, that a UAC which has received a response to an INVITE request SHOULD finish the processing of the response including transmitting the ACK before it contacts the policy server. An important exception to this rule is discussed in the next paragraph. In some cases, a UA needs to use the offer/answer it has received in a SIP message to create an ACK or PRACK response for this message, i.e. it needs to use the offer/answer before finishing the SIP machinery for this message. For example, a UAC that has received an offer in the response to an INVITE request needs to apply policies to the offer and the answer before it can send the answer in an ACK. In these cases, a UA SHOULD contact the policy server even if this is during the processing of a SIP message. This implies that a UA, which has received an offer in the response of an INVITE request, SHOULD contact the policy server and apply session policies before sending the answer in the ACK. Note: this assumes that the policy server can always respond immediately to a policy request and does not require manual intervention to create a policy. This will be the case for most policy servers. If, however, a policy server cannot respond with a policy right away, it may return a policy that temporarily denies the session and update this policy as the actual policy decision becomes available. A delay in the response from the policy server to the UA would delay the transmission of the ACK and could trigger retransmissions of the INVITE response (also see the recommendations for Flow I in [9]). A UA MUST inform the policy server when a session is terminated via the policy channel. This enables a policy server to free all resources it may have allocated for this session. A policy server can indicate via the policy channel that it does not need to be contacted at the end of a session. In this case, the UA SHOULD NOT inform the policy server about the termination of the session. 4.4.7. Header Definition and Syntax Hilt, et al. Expires August 13, 2007 [Page 20] Internet-Draft Session Policy Framework February 2007 4.4.7.1. Policy-Id Header The Policy-Id header field is inserted by the UAC into INVITE, UPDATE or PRACK requests (or any other request that can be used to initiate an offer/answer exchange). The Policy-Id header identifies all policy servers the UAC has contacted for this request. The value of a Policy-Id header consists of a policy server URI. A Policy-Id header value may have an optional token parameter. The token parameter contains a token the UA may receive from the policy server. If the UA has received a token, it MUST be included in the Policy-Id header. The syntax of the Policy-Id header field is: Policy-Id = "Policy-Id" HCOLON policyURI *(COMMA policyURI) policyURI = ( SIP-URI / SIPS-URI ) [ SEMI token-param ] *( SEMI generic-param ) token-param = "token=" token The BNF for SIP-URI, SIPS-URI, token and generic-param is defined in [6]. 4.4.7.2. Policy-Contact Header The Policy-Contact header field can be inserted by a proxy into a 488 response to INVITE, UPDATE or PRACK requests (or other requests that initiate an offer/answer exchange). It contains a policy server URI that needs to be contacted by the UAC. A proxy MAY add the "non- cacheable" header field parameter to indicate that a UA MUST NOT cache this policy server URI. The Policy-Contact header field can also be inserted by a proxy into INVITE, UPDATE and PRACK requests (or other requests that can be used to initiate an offer/answer exchange). It contains an ordered list of policy server URIs that need to be contacted by the UAS. The UAS starts to process the header field at the topmost value of this list. New header field values are inserted at the top. The Policy-Contact header field effectively forms a stack. The syntax of the Policy-Contact header field is: Policy-Contact = "Policy-Contact" HCOLON policyContactURI *(COMMA policyContactURI) policyContactURI = ( SIP-URI / SIPS-URI ) [ SEMI "non-cacheable" ] *( SEMI generic-param ) Hilt, et al. Expires August 13, 2007 [Page 21] Internet-Draft Session Policy Framework February 2007 The BNF for SIP-URI, SIPS-URI and generic-param is defined in [6]. Table 1 is an extension of Tables 2 and 3 in [6]. The column 'UPD' is for the UPDATE method [5]. Header field where proxy ACK BYE CAN INV OPT REG UPD _______________________________________________________________ Policy-Id R rd - - - o - - o Policy-Contact R a - - - o - - o Policy-Contact 488 a - - - o - - o Table 1: Policy-Id and Policy-Contact Header Fields 4.5. Policy Channel The main task of the policy channel is to enable a UA to submit information about the session it is trying to establish (i.e. the offer and the answer) to a policy server and to receive the resulting session-specific policies and possible updates to these policies in response. A UA compliant to this specification MUST implement the Event Package for Session-Specific Session Policies [2]. It contacts a policy server by subscribing to this event package. A UA MUST use the policies it has received from the policy server in the current session. If these policies are unacceptable, the UA MUST NOT attempt to establish the session. When a UA receives a notification about a change in the current policies, it MUST apply the updated policies to the current session or it MUST terminate the session. If the policy update causes a change in the session description of a session, the UA may need to re-negotiate the modified session description with its peer UA, for example, using a re-INVITE or UPDATE request. For example, if a policy update disallows the use of video and video is part of the current session description, then the UA will need to create an new session description offer without video. After receiving this offer, the peer UA knows that video can't be used any more and responds with the corresponding answer. The re-INVITE or UPDATE message need to be generated in accordance to Section 4.4.1. 5. Security Considerations Session policies can significantly change the behavior of a user agent and can be used by an attacker to compromise a user agent. For example, session policies can be used to prevent a user agent from successfully establishing a session (e.g. by setting the available bandwidth to zero). Such a policy can be submitted to the user agent Hilt, et al. Expires August 13, 2007 [Page 22] Internet-Draft Session Policy Framework February 2007 during a session, which may cause the UA to terminate the session. A user agent transmits session information to a policy server for session-specific policies. This session information may contain sensitive data the user may not want an eavesdropper or an unauthorized policy server to see. For example, the session information may contain the encryption keys for media streams. Vice versa, session policies may also contain sensitive information about the network or service level agreements the service provider may not want to disclose to an eavesdropper or an unauthorized user agent. It is important to secure the communication between the proxy and the user agent (for session-specific policies) as well as the user agent and the policy server. The following four discrete attributes need to be protected: 1. integrity of the policy server URI (for session-specific policies), 2. authentication of the policy server and, if needed, the user agent, 3. confidentiality of the messages exchanged between the user agent and the policy server and 4. ensuring that private information is not exchanged between the two parties, even over an confidentiality-assured and authenticated session. To protect the integrity of the policy server URI, a UA SHOULD use a secured transport protocol such as TLS between proxies and the UA. Protecting the integrity of the policy server URI is important since an attacker could intercept SIP messages between the UA and the proxy and remove the policy headers needed for session-specific policies. This would impede the rendezvous between UA and policy server and, since the UA would not contact the policy server, may prevent a UA from setting up a session. Instead of removing a policy server URI, an attacker can also modify the policy server URI and point the UA to a compromised policy server. To prevent such an attack from being effective, it is RECOMMENDED that a UA authenticates policy servers. Policy servers SHOULD authenticate UAs to protect the information that is contained in a session policy. However, a policy server may also frequently encounter UAs it cannot authenticate. In these cases, the policy server MAY provide a generic policy that does not reveal sensitive information to these UAs. It is RECOMMENDED that administrators use SIPS URIs as policy server URIs so that subscriptions to session policies are transmitted over Hilt, et al. Expires August 13, 2007 [Page 23] Internet-Draft Session Policy Framework February 2007 TLS. The above security attributes are important to protect the communication between the user agent and policy server. This document does not define the protocol used for the communication between user agent and policy server and merely refers to other specifications for this purpose. The security considerations of these specifications need to address the above security aspects. 6. IANA Considerations 6.1. Registration of the "Policy-Id" Header Name of Header: Policy-Id Short form: none Normative description: Section 4.4.7 of this document 6.2. Registration of the "Policy-Contact" Header Name of Header: Policy-Contact Short form: none Normative description: Section 4.4.7 of this document 6.3. Registration of the "policy" SIP Option-Tag Name of option: policy Description: Support for the Policy-Contact and Policy-Id headers. SIP headers defined: Policy-Contact, Policy-Id Normative description: This document Appendix A. Acknowledgements Many thanks to Allison Mankin for the discussions and the suggestions for this draft and to Roni Even, Bob Penfield, Mary Barnes and Shida Schubert for reviewing the draft and providing feedback. Many thanks to Vijay Gurbani for the comments and feedback. Hilt, et al. Expires August 13, 2007 [Page 24] Internet-Draft Session Policy Framework February 2007 Appendix B. Session-Specific Policies - Call Flows The following call flows illustrate the overall operation of session- specific policies including the policy channel protocol as defined in [2]. The following abbreviations are used: o: offer o': offer modified by a policy po: offer policy a: answer a': answer modified by a policy pa: answer policy ps uri: policy server URI (in Policy-Contact header) ps id: policy server id (in Policy-Id header) B.1. Offer in Invite Hilt, et al. Expires August 13, 2007 [Page 25] Internet-Draft Session Policy Framework February 2007 UA A P A PS A PS B P B UA B | | | | | | |(1) INV | | | | |-------->| | | | | |(2) 488 | | | | |<--------| | | | | |(3) ACK | | | | | |-------->| | | | | |(4) SUBSCRIBE | | | | |------------------>| | | | |(5) 200 OK | | | | |<------------------| | | | |(6) NOTIFY | | | | |<------------------| | | | |(7) 200 OK | | | | |------------------>| | | | |(8) INV | | | | |-------->| | | | | | |(9) INV | | | | |---------------------------->| | | | | | |(10) INV | | | | |-------->| | | | |(11) SUBSCRIBE | | | |<------------------| | | | |(12) 200 OK | | | | |------------------>| | | | |(13) NOTIFY | | | |------------------>| | | | |(14) 200 OK | | | | |<------------------| | | | | |(15) 200 OK | | | | |<--------| | |(16) 200 OK | | | | |<----------------------------| | |(17) 200 OK | | | | |<--------| | | | | |(18) ACK | | | | | |------------------------------------------------>| |(19) SUBSCRIBE | | | |------------------>| | | | |(20) 200 OK | | | | |<------------------| | | | |(21) NOTIFY | | | | |<------------------| | | | |(22) 200 OK | | | | |------------------>| | | | | | | | | | | | | | | | Hilt, et al. Expires August 13, 2007 [Page 26] Internet-Draft Session Policy Framework February 2007 B.2. Offer in Response UA A P A PS A PS B P B UA B | | | | | | |(1) INV | | | | | |-------->| | | | | |(2) 488 | | | | |<--------| | | | | |(3) ACK | | | | | |-------->| | | | | |(4) SUBSCRIBE | | | | |------------------>| | | | |(5) 200 OK | | | | |<------------------| | | | |(6) NOTIFY | | | | |<------------------| | | | |(7) 200 OK | | | | |------------------>| | | | |(8) INV | | | | |-------->| | | | | | |(9) INV | | | | | |---------------------------->| | | | | | |(10) INV | | | | |-------->| | | | |(11) SUBSCRIBE | | | | |<------------------| | | | |(12) 200 OK | | | | |------------------>| | | | |(13) NOTIFY | | | | |------------------>| | | | |(14) 200 OK | | | | |<------------------| | | | | |(15) 200 OK | | | | |<--------| | |(16) 200 OK | | | | |<----------------------------| | |(17) 200 OK | | | | |<--------| | | | | |(18) SUBSCRIBE | | | |------------------>| | | | |(19) 200 OK | | | | |<------------------| | | | |(20) NOTIFY | | | |<------------------| | | | |(21) 200 OK | | | | |------------------>| | | | |(22) ACK | | | | |------------------------------------------------>| Hilt, et al. Expires August 13, 2007 [Page 27] Internet-Draft Session Policy Framework February 2007 | | | |(23) SUBSCRIBE | | | |<------------------| | | | |(24) 200 OK | | | | |------------------>| | | | |(25) NOTIFY | | | |------------------>| | | | |(26) 200 OK | | | | |<------------------| | | | | | | | | | | | | 7. References 7.1. Normative References [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [2] Hilt, V. and G. Camarillo, "A Session Initiation Protocol (SIP) Event Package for Session-Specific Session Policies.", draft-ietf-sipping-policy-package-03 (work in progress), January 2007. [3] Hilt, V., Camarillo, G., and J. Rosenberg, "A User Agent Profile Data Set for Media Policy", draft-ietf-sipping-media-policy-dataset-02 (work in progress), October 2006. [4] Petrie, D. and S. Channabasappa, "A Framework for Session Initiation Protocol User Agent Profile Delivery", draft-ietf-sipping-config-framework-10 (work in progress), January 2007. [5] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE Method", RFC 3311, October 2002. [6] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol", RFC 3261, June 2002. 7.2. Informative References [7] Handley, M. and V. Jacobson, "SDP: Session Description Protocol", RFC 2327, April 1998. [8] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with Session Description Protocol (SDP)", RFC 3264, June 2002. Hilt, et al. Expires August 13, 2007 [Page 28] Internet-Draft Session Policy Framework February 2007 [9] Rosenberg, J., Peterson, J., Schulzrinne, H., and G. Camarillo, "Best Current Practices for Third Party Call Control (3pcc) in the Session Initiation Protocol (SIP)", BCP 85, RFC 3725, April 2004. Authors' Addresses Volker Hilt Bell Labs/Alcatel-Lucent 101 Crawfords Corner Rd Holmdel, NJ 07733 USA Email: volkerh@bell-labs.com Gonzalo Camarillo Ericsson Hirsalantie 11 Jorvas 02420 Finland Email: Gonzalo.Camarillo@ericsson.com Jonathan Rosenberg Cisco Systems 600 Lanidex Plaza Parsippany, NJ 07054 USA Email: jdrosen@cisco.com Hilt, et al. Expires August 13, 2007 [Page 29] Internet-Draft Session Policy Framework February 2007 Full Copyright Statement Copyright (C) The IETF Trust (2007). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Acknowledgment Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA). Hilt, et al. Expires August 13, 2007 [Page 30]