
The TIE processor

(CWEB Version 2.4 [TEX Live])

Section Page
Introduction . 1 1
The character set . 7 2
Input and output . 15 3
Data structures . 18 4
File I/O . 24 5
Reporting errors to the user . 31 7
Handling multiple change files . 34 8
Input/output organization . 38 9
The main program . 59 13
System-dependent changes . 61 13
Index . 62 14

Copyright c⃝ 1989, 1992 by Technische Hochschule Darmstadt,
Fachbereich Informatik, Institut für Theoretische Informatik

All rights reserved.

This program is distributed WITHOUT ANY WARRANTY, express or implied.

Permission is granted to make and distribute verbatim copies of this program provided that the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this program under the conditions for ver-
batim copying, provided that the entire resulting derived work is distributed under the terms of a permission
notice identical to this one.

Editor’s Note: The present variant of this C/WEB source file has been modified for use in the TEX Live system.

The following sections were changed by the change file: 1, 2, 3, 4, 5, 6, 15, 16, 18, 19, 24, 27, 29, 31, 32, 33, 34, 36, 37, 38, 39,
42, 43, 44, 47, 48, 53, 55, 56, 59, 60, 62.

March 12, 2025 at 15:41

§1 TIE INTRODUCTION 1

1*. Introduction.
Whenever a programmer wants to change a given WEB or CWEB program (referred to as a WEB program
throughout this program) because of system dependencies, she or he will create a new change file. In
addition there may be a second change file to modify system independent modules of the program. But
the WEB file cannot be tangled and weaved with more than one change file simultaneously. Therefore, we
introduce the present program to merge a WEB file and several change files producing a new WEB file. Since
the input files are tied together, the program is called TIE. Furthermore, the program can be used to merge
several change files giving a new single change file. This method seems to be more important because it
doesn’t modify the original source file. The use of TIE can be expanded to other programming languages
since this processor only knows about the structure of change files and does not interpret the master file at
all.

The program TIE has to read lines from several input files to bring them in some special ordering. For
this purpose an algorithm is used which looks a little bit complicated. But the method used only needs one
buffer line for each input file. Thus the storage requirement of TIE does not depend on the input data.
The program is written in C and uses only few features of a particular environment that may need to be

changed in other installations. The changes needed may refer to the access of the command line if this can
be not supported by any C compiler.

The “banner line” defined here should be changed whenever TIE is modified. This program is put into
the public domain. Nevertheless the copyright notice must not be replaced or modified.

#define banner "This␣is␣TIE,␣CWEB␣Version␣2.4"

▷ will be extended by the TEX Live versionstring ◁
#define copyright "Copyright␣(c)␣1989,1992␣by␣THD/ITI.␣All␣rights␣reserved."

2*. The main outline of the program is given in the next section. This can be used more or less for any C
program.

⟨Global #includes 15* ⟩
⟨Global constants 5* ⟩
⟨Global types 7 ⟩
⟨Global variables 6* ⟩
⟨Error handling functions 31* ⟩
⟨ Internal functions 24* ⟩
⟨The main function 59* ⟩

3*. Here are some macros for common programming idioms.

#define loop while (1) ▷ repeat over and over until a break happens ◁
#define do nothing ▷ empty statement ◁
format loop while

4*. The types boolean (with values false and true) and string come from <kpathsea/simpletypes.h>.

5*. The following parameters should be sufficient for most applications of TIE.

⟨Global constants 5* ⟩ ≡
#define buf size 512 ▷ maximum length of one input line ◁
#define max file index 32

▷ we don’t think that anyone needs more than 32 change files, but . . . just change it ◁

This code is used in section 2*.

2 INTRODUCTION TIE §6

6*. We introduce a history variable that allows us to set a return code if the operating system can use it.
First we introduce the coded values for the history. This variable must be initialized. (We do this even if
the value given may be the default for variables, just to document the need for the initial value.)

⟨Global variables 6* ⟩ ≡
typedef enum {
spotless , troublesome , fatal
} return code;
static return code history ← spotless ;

See also sections 9, 22, 23, 26, and 35.

This code is used in section 2*.

§15 TIE INPUT AND OUTPUT 3

15*. Input and output.
Output for the user is done by writing on file term out , which is assumed to consist of characters of type
text char. It should be linked to stdout usually. Terminal input is not needed in this version of TIE.
stdin and stdout are predefined if we include the stdio.h definitions. Although I/O redirection for stdout
is usually available you may lead output to another file if you change the definition of term out . Also we
define some macros for terminating an output line and writing strings to the user.

#define term out stdout
#define print (a) fprintf (term out , "%s", a) ▷ ‘print ’ means write on the terminal ◁
#define print2 (a, b) fprintf (term out , a, b) ▷ same with two arguments ◁
#define print3 (a, b, c) fprintf (stderr , a, b, c) ▷ same with three arguments ◁
#define print c(v) fputc(v, term out); ▷ print a single character ◁
#define new line (v) fputc(’\n’, v) ▷ start new line ◁
#define term new line new line (term out) ▷ start new line of the terminal ◁
#define print ln (v)

{
fprintf (term out , "%s", v); term new line ;
} ▷ ‘print ’ and then start new line ◁

#define print2 ln (a, b)
{
print2 (a, b); term new line ;
} ▷ same with two arguments ◁

#define print3 ln (a, b, c)
{
print3 (a, b, c); new line (stderr);
} ▷ same with three arguments ◁

#define print nl (v)
{
term new line ; print (v);
} ▷ print information starting on a new line ◁

#define print2 nl (a, b)
{
term new line ; print2 (a, b);
} ▷ same for two arguments ◁

⟨Global #includes 15* ⟩ ≡
#include "cpascal.h" ▷ decr and incr ◁
#include <kpathsea/kpathsea.h>

#define usage tieusage ▷ Also redefine usage to avoid clash with function from lib. ◁

This code is used in section 2*.

16*. And we need dynamic memory allocation. This should cause no trouble in any C program. The
kpathsea include files handle the definition of malloc , too.

4 DATA STRUCTURES TIE §18

18*. Data structures.
The multiple input files (master file and change files) are treated the same way. To organize the simultaneous
usage of several input files, we introduce the data type in file modes.
The mode search indicates that TIE searches for a match of the input line with any line of an input file

in reading mode. test is used whenever a match is found and it has to be tested if the next input lines do
match also. reading describes that the lines can be read without any check for matching other lines. ignore
denotes that the file cannot be used. This may happen because an error has been detected or because the
end of the file has been found.

file types is used to describe whether a file is a master file or a change file. The value unknown is added
to this type to set an initial mode for the output file. This enables us to check whether any option was used
to select the kind of output. (This would even be necessary if we would assume a default action for missing
options.)

⟨Global types 7 ⟩ +≡
typedef enum {
search , test , reading , ignore
} in file modes;
typedef enum {
unknown ,master , chf
} file types;

19*. A variable of type out md type will tell us in what state the output change file is during processing.
normal will be the state, when we did not yet start a change, pre will be set when we write the lines to be
changes and post will indicate that the replacement lines are written.

⟨Global types 7 ⟩ +≡
typedef enum {
normal , pre , post
} out md type;

§24 TIE FILE I/O 5

24*. File I/O.
The basic function get line can be used to get a line from an input file. The line is stored in the buffer part
of the descriptor. The components limit and line are updated. If the end of the file is reached mode is set
to ignore . On some systems it might be useful to replace tab characters by a proper number of spaces since
several editors used to create change files insert tab characters into a source file not under control of the
user. So it might be a problem to create a matching change file.

We define get line to read a line from a file specified by the corresponding file descriptor.

⟨ Internal functions 24* ⟩ ≡
static void get line (file index i)
{
register input description ∗inp desc ← input organization [i];

if (inp desc⃗ mode ≡ ignore) return;
if (feof (inp desc⃗ the file)) ⟨Handle end of file and return 25 ⟩
⟨Get line into buffer 27* ⟩
}

See also sections 38*, 39*, 42*, 43*, 44*, and 55*.

This code is used in section 2*.

27*. Lines must fit into the buffer completely. We read all characters sequentially until an end of line is
found (but do not forget to check for EOF!). Too long input lines will be truncated. This will result in
a damaged output if they occur in the replacement part of a change file, or in an incomplete check if the
matching part is concerned. Tab character expansion might be done here.

⟨Get line into buffer 27* ⟩ ≡
{
int final limit ; ▷ used to delete trailing spaces ◁
int c; ▷ the actual character read ◁

⟨ Increment the line number and print a progess report at certain times 28 ⟩
inp desc⃗ limit ← final limit ← 0;
while (inp desc⃗ limit < buf size) {
c← fgetc(inp desc⃗ the file);
⟨Check c for EOF, return if line was empty, otherwise break to process last line 29* ⟩
inp desc⃗ buffer [inp desc⃗ limit ++]← c← map xord (c);
if (c ≡ nl mark) break; ▷ end of line found ◁
if (c ̸= @’␣’ ∧ c ̸= tab mark ∧ c ̸= @’\r’) final limit ← inp desc⃗ limit ;

}
⟨Test for truncated line, skip to end of line 30 ⟩
inp desc⃗ limit ← final limit ;
}

This code is used in section 24*.

6 FILE I/O TIE §29

29*. There may be incomplete lines if the editor used does not make sure that the last character before end
of file is an end of line. In such a case we must process the final line. If the current line is empty, we just
can return. Note that this test must be done before the character read is translated.

⟨Check c for EOF, return if line was empty, otherwise break to process last line 29* ⟩ ≡
if (c ≡ EOF) {
if (inp desc⃗ limit ≤ 0) {
inp desc⃗ mode ← ignore ; inp desc⃗ limit ← −1; ▷ mark end-of-file ◁
if (inp desc⃗ type of file ≡ master) input has ended ← true ;
return;

}
else { ▷ add end of line mark ◁

c← nl mark ; break;
}
}

This code is used in section 27*.

§31 TIE REPORTING ERRORS TO THE USER 7

31*. Reporting errors to the user.
There may be errors if a line in a given change file does not match a line in the master file or a replacement
in a previous change file. Such errors are reported to the user by saying

err print ("!␣Error␣message")(file no);

where file no is the number of the file which is concerned by the error. Please note that no trailing dot is
supplied by the error message because it is appended by err print .

This function is implemented as a macro. It gives a message and an indication of the offending file. The
actions to determine the error location are provided by a function called err loc .

#define error loc(m) err loc(m); history ← troublesome ; }
#define err print (m) { new line (stderr); fprintf (stderr , "%s",m); error loc

⟨Error handling functions 31* ⟩ ≡
static void err loc(int i) ▷ prints location of error ◁
{
print3 ln ("␣(file␣%s,␣l.%ld).", input organization [i]⃗ name of file , input organization [i]⃗ line);
}

This code is used in section 2*.

32*. Non recoverable errors are handled by calling fatal error that outputs a message and then calls
‘jump out ’. err print will print the error message followed by an indication of where the error was spotted
in the source files. fatal error cannot state any files because the problem is usually to access these.

#define fatal error (m)
{
fprintf (stderr , "%s",m); fputc(’.’, stderr); history ← fatal ; new line (stderr); jump out ();
}

33*. jump out just cuts across all active procedure levels and jumps out of the program. It is used when no
recovery from a particular error has been provided. The return code from this program should be regarded
by the caller.

#define jump out () exit (EXIT_FAILURE)

8 HANDLING MULTIPLE CHANGE FILES TIE §34

34*. Handling multiple change files.
In the standard version we take the name of the files from the command line. It is assumed that filenames
can be used as given in the command line without changes.

First there are some sections to open all files. If a file is not accessible, the run will be aborted. Otherwise
the name of the open file will be displayed.

⟨Prepare the output file 34* ⟩ ≡
{
out file ← fopen (out name , "wb");
if (out file ≡ Λ) {
fatal error ("!␣Could␣not␣open/create␣output␣file");

}
}

This code is used in section 59*.

36*. For the master file we start just reading its first line into the buffer, if we could open it.

⟨Get the master file started 36* ⟩ ≡
{
input organization [0]⃗ the file ← kpse open file (input organization [0]⃗ name of file , kpse web format);
if (input organization [0]⃗ the file ≡ Λ) fatal error ("!␣Could␣not␣open␣master␣file");
print2 ("(%s)", input organization [0]⃗ name of file); term new line ;
input organization [0]⃗ type of file ← master ; get line (0);
}

This code is used in section 59*.

37*. For the change files we must skip the comment part and see, whether we can find any change in it.
This is done by init change file .

⟨Prepare the change files 37* ⟩ ≡
{
file index i;

i← 1;
while (i < no ch) {

input organization [i]⃗ the file ← kpse open file (input organization [i]⃗ name of file , kpse web format);
if (input organization [i]⃗ the file ≡ Λ) fatal error ("!Could␣not␣open␣change␣file");
print2 ("(%s)", input organization [i]⃗ name of file); term new line ; init change file (i, true); incr (i);

}
}

This code is used in section 59*.

§38 TIE INPUT/OUTPUT ORGANIZATION 9

38*. Input/output organization.
Here’s a simple function that checks if two lines are different.

⟨ Internal functions 24* ⟩ +≡
static boolean lines dont match (file index i,file index j)
{
buffer index k, lmt ;

if (input organization [i]⃗ limit ̸= input organization [j]⃗ limit) return (true);
lmt ← input organization [i]⃗ limit ;
for (k ← 0; k < lmt ; k++)
if (input organization [i]⃗ buffer [k] ̸= input organization [j]⃗ buffer [k]) return (true);

return (false);
}

39*. Function init change file (i, b) is used to ignore all lines of the input file with index i until the next
change module is found. The boolean parameter b indicates whether we do not want to see @x or @y entries
during our skip.

⟨ Internal functions 24* ⟩ +≡
static void init change file (file index i,boolean b)
{
register input description ∗inp desc ← input organization [i];

⟨ Skip over comment lines; return if end of file 40 ⟩
⟨ Skip to the next nonblank line; return if end of file 41 ⟩
}

42*. The put line function is used to write a line from input buffer j to the output file.

⟨ Internal functions 24* ⟩ +≡
static void put line (file index j)
{
buffer index i; ▷ index into the buffer ◁
buffer index lmt ; ▷ line length ◁
ASCII Code ∗p; ▷ output pointer ◁

lmt ← input organization [j]⃗ limit ; p← input organization [j]⃗ buffer ;
for (i← 0; i < lmt ; i++) fputc(map xchr (∗p++), out file);
new line (out file);
}

43*. The function e of ch module returns true if the input line from file i starts with @z.

⟨ Internal functions 24* ⟩ +≡
static boolean e of ch module (file index i)
{
register input description ∗inp desc ← input organization [i];

if (inp desc⃗ limit < 0) {
print nl ("!␣At␣the␣end␣of␣change␣file␣missing␣@z␣");
print2 ("%s", input organization [i]⃗ name of file); term new line ; return (true);

}
else if (inp desc⃗ limit ≥ 2)
if (inp desc⃗ buffer [0] ≡ @’@’ ∧ (inp desc⃗ buffer [1] ≡ @’Z’ ∨ inp desc⃗ buffer [1] ≡ @’z’))
return (true);

return (false);
}

10 INPUT/OUTPUT ORGANIZATION TIE §44

44*. The function e of ch preamble returns true if the input line from file i starts with @y.

⟨ Internal functions 24* ⟩ +≡
static boolean e of ch preamble (file index i)
{
register input description ∗inp desc ← input organization [i];

if (inp desc⃗ limit ≥ 2 ∧ inp desc⃗ buffer [0] ≡ @’@’)
if (inp desc⃗ buffer [1] ≡ @’Y’ ∨ inp desc⃗ buffer [1] ≡ @’y’) return (true);

return (false);
}

47*. Now we will set test input to the file that has another match for the current line. This depends on the
state of the other change files. If no other file matches, actual input refers to a line to write and test input
is set to none .

#define none (max file index + 1)

⟨ Scan all other files for changes to be done 47* ⟩ ≡
test input ← none ; test file ← actual input ;
while (test input ≡ none ∧ test file < no ch − 1) {
incr (test file);
switch (input organization [test file]⃗ mode) {
case search :
if (lines dont match (actual input , test file) ≡ false) {

input organization [test file]⃗ mode ← test ; test input ← test file ;
}
break;

case test :
if (lines dont match (actual input , test file) ≡ true) { ▷ error, sections do not match ◁

input organization [test file]⃗ mode ← search ;
err print ("!␣Sections␣do␣not␣match")(actual input); err loc(test file);
init change file (test file , false);

}
else test input ← test file ;
break;

case reading : do nothing ; ▷ this can’t happen ◁
break;

case ignore : do nothing ; ▷ nothing to do ◁
break;

}
}

This code is used in section 45.

§48 TIE INPUT/OUTPUT ORGANIZATION 11

48*. For the output we must distinguish whether we create a new change file or a new master file. The
change file creation needs some closer inspection because we may be before a change, in the pattern part or
in the replacement part. For a master file we have to write the line from the current actual input.

⟨Handle output 48* ⟩ ≡
if (prod chf ≡ chf) loop {
⟨Test for normal, break when done 49 ⟩
⟨Test for pre, break when done 50 ⟩
⟨Test for post, break when done 51 ⟩
}
else
if (test input ≡ none) put line (actual input);

This code is used in section 45.

53*. To create the new output file we have to scan the whole master file and all changes in effect when it
ends. At the very end it is wise to check for all changes to have completed–in case the last line of the master
file was to be changed.

⟨Process the input 53* ⟩ ≡
actual input ← 0; input has ended ← false ;
while (input has ended ≡ false ∨ actual input ̸= 0)
⟨Process a line, break when end of source reached 45 ⟩

if (out mode ≡ pre) { ▷ last line has been deleted ◁
fputc(map xchr (@’@’), out file); fputc(map xchr (@’y’), out file); new line (out file);
out mode ← post ;
}
if (out mode ≡ post) { ▷ last line has been changed ◁
fputc(map xchr (@’@’), out file); fputc(map xchr (@’z’), out file); new line (out file);
}

This code is used in section 59*.

55*. We want to tell the user about our command line options. This is done by the usage () function. It
contains merely the necessary print statement and exits afterwards.

⟨ Internal functions 24* ⟩ +≡
static void usage (void)
{
print ("Usage:␣tie␣−m|−c␣outfile␣master␣changefile(s)"); term new line ; jump out ();
}

12 INPUT/OUTPUT ORGANIZATION TIE §56

56*. We must scan through the list of parameters, given in argv . The number is in argc . We must pay
attention to the flag parameter. We need at least 5 parameters and can handle up to max file index change
files. The names of the file parameters will be inserted into the structure of input organization . The first file
is special. It indicates the output file. When we allow flags at any position, we must find out which name is
for what purpose. The master file is already part of the input organization structure (index 0). As long as
the number of files found (counted in no ch) is −1 we have not yet found the output file name.

⟨ Scan the parameters 56* ⟩ ≡
{
int act arg ;

if (argc < 5 ∨ argc > max file index + 4− 1) usage ();
no ch ← −1; ▷ fill this part of input organization ◁
for (act arg ← 1; act arg < argc ; act arg ++) {

if (argv [act arg][0] ≡ ’−’) ⟨ Set a flag 57 ⟩
else ⟨Get a file name 58 ⟩

}
if (no ch ≤ 0 ∨ prod chf ≡ unknown) usage ();
}

This code is used in section 59*.

§59 TIE THE MAIN PROGRAM 13

59*. The main program.
Here is where TIE starts, and where it ends.

This version of the TIE program uses the KPATHSEA library for searching files. Firstly, we use the
kpse web format when opening input files, which triggers the inspection of the WEBINPUTS environment
variable. Secondly, we set kpse program name to ‘tie’. This means if the variable WEBINPUTS.tie is
present in texmf.cnf (or WEBINPUTS_tie in the environment) its value will be used as the search path for
filenames. This allows different flavors of TIE (or other WEB programs) to have different search paths. In all,
the directories to be searched for come from at least two sources:

(a) a user-set environment variable WEBINPUTS (overridden by WEBINPUTS_tie);
(b) a line in KPATHSEA configuration file texmf.cnf,

e.g., WEBINPUTS=$TEXMFDOTDIR:$TEXMF/texmf/web//
or WEBINPUTS.tie=$TEXMFDOTDIR:$TEXMF/texmf/web//.

Note that, although WEBINPUTS might suggest otherwise, TIE is more or less language-agnostic and that
it is perfectly capable of handling CWEB files as input as well, as long as the “change files” adhere to the
general @x, @y, @z convention.

⟨The main function 59* ⟩ ≡
int main (int argc , string ∗argv)
{
{
⟨Local variables for initialisation 12 ⟩
⟨ Set initial values 10 ⟩

}
kpse set program name (argv [0], "tie"); print (banner); ▷ print a “banner line” ◁
print ln (versionstring); ▷ Web2C version ◁
print ln (copyright); ▷ include the copyright notice ◁
actual input ← 0; out mode ← normal ; ⟨ Scan the parameters 56* ⟩
⟨Prepare the output file 34* ⟩
⟨Get the master file started 36* ⟩
⟨Prepare the change files 37* ⟩
⟨Process the input 53* ⟩
⟨Check that all changes have been read 54 ⟩
⟨Print the job history 60* ⟩
}

This code is used in section 2*.

60*. We want to pass the history value to the operating system so that it can be used to govern whether
or not other programs are started. Additionally we report the history to the user, although this may not be
“UNIX” style—but we are in best companion: WEB and TEX do the same.

⟨Print the job history 60* ⟩ ≡
{
switch (history) {
case spotless : print2 nl ("(%s.)", "No␣errors␣were␣found"); term new line ; break;
case troublesome : new line (stderr);

fprintf (stderr , "(Pardon␣me,␣but␣I␣think␣I␣spotted␣something␣wrong.)"); new line (stderr);
break;

case fatal : default: ▷ Anything except spotless, troublesome, or fatal is a bug. ◁
new line (stderr); fprintf (stderr , "(That␣was␣a␣fatal␣error,␣my␣friend.)"); new line (stderr);
break;

}
exit (history ≡ spotless ? EXIT_SUCCESS : EXIT_FAILURE);
}

This code is used in section 59*.

14 INDEX TIE §62

62*. Index.
Here is the cross-reference table for the TIE processor.

The following sections were changed by the change file: 1, 2, 3, 4, 5, 6, 15, 16, 18, 19, 24, 27, 29, 31, 32, 33, 34, 36, 37, 38, 39,

42, 43, 44, 47, 48, 53, 55, 56, 59, 60, 62.

idsc: 21.
act arg : 56*, 57, 58.
actual input : 22, 45, 46, 47*, 48*, 50, 51, 52, 53*, 59*.
argc : 56*, 59*.
argv : 56*, 57, 58, 59*.
ASCII Code: 7, 9, 21, 40, 42*.
At the end of change file...: 43*.
b: 39*.
banner : 1*, 59*.
boolean: 4*, 26, 38*, 39*, 43*, 44*.
buf size : 5*, 20, 21, 27*.
buffer : 21, 24*, 27*, 38*, 40, 42*, 43*, 44*.
buffer index: 20, 21, 38*, 42*.
c: 27*, 40.
Change file ended...: 41.
Change file entry ...: 54.
chf : 18*, 48*, 51, 57, 58.
chr : 9.
copyright : 1*, 59*.
Could not open change file: 37*.
Could not open master file: 36*.
Could not open/create output file: 34*.
decr : 15*, 46.
do nothing : 3*, 14, 30, 47*.
e of ch module : 43*, 46.
e of ch preamble : 44*, 52.
EOF: 27*, 29*, 30.
err loc : 31*, 47*.
err print : 30, 31*, 32*, 40, 41, 47*, 54.
error loc : 31*.
exit : 33*, 60*.
EXIT_FAILURE: 33*, 60*.
EXIT_SUCCESS: 60*.
false : 4*, 26, 38*, 43*, 44*, 47*, 53*.
fatal : 6*, 32*, 60*.
fatal error : 32*, 34*, 36*, 37*, 46, 58.
feof : 24*.
fflush : 17.
fgetc : 27*, 30.
file index: 20, 22, 24*, 37*, 38*, 39*, 42*, 43*, 44*,

45, 54.
file no : 31*.
file types: 18*, 21, 22.
final limit : 27*.
first text char : 8, 14.
fopen : 34*.
form feed : 11, 13.
fprintf : 15*, 31*, 32*, 60*.

fputc : 15*, 32*, 42*, 49, 50, 51, 53*.
get line : 24*, 36*, 40, 41, 52.
history : 6*, 31*, 32*, 60*.
i: 12, 24*, 31*, 37*, 38*, 39*, 42*, 43*, 44*, 54.
ignore : 18*, 24*, 25, 29*, 40, 41, 47*, 54.
in file modes: 18*, 21.
incr : 15*, 28, 37*, 47*, 58.
init change file : 37*, 39*, 46, 47*.
inp desc : 24*, 25, 27*, 28, 29*, 30, 39*, 40, 41,

43*, 44*, 46, 58.
Input line too long: 30.
input description: 21, 23, 24*, 39*, 43*, 44*, 46, 58.
input has ended : 25, 26, 29*, 45, 53*.
input organization : 23, 24*, 31*, 36*, 37*, 38*, 39*, 42*,

43*, 44*, 45, 46, 47*, 50, 51, 52, 54, 56*, 58.
j: 38*, 42*.
jump out : 32*, 33*, 55*.
k: 38*.
kpse open file : 36*, 37*.
kpse program name : 59*.
kpse set program name : 59*.
kpse web format : 36*, 37*, 59*.
last text char : 8, 9, 14.
limit : 21, 24*, 25, 27*, 29*, 38*, 40, 41, 42*, 43*, 44*, 58.
line : 21, 24*, 28, 31*, 58.
lines dont match : 38*, 47*.
lmt : 38*, 42*.
loop: 3*, 40, 48*.
main : 59*.
malloc : 16*, 58.
map xchr : 9, 42*, 49, 50, 51, 53*.
map xord : 9, 27*, 30.
master : 18*, 25, 28, 29*, 36*, 46, 50, 57.
max ASCII : 7, 9.
max file index : 5*, 20, 23, 47*, 56*.
mode : 21, 24*, 25, 29*, 40, 41, 46, 47*, 52, 54, 58.
name of file : 21, 31*, 36*, 37*, 43*, 58.
new line : 15*, 31*, 32*, 42*, 49, 50, 51, 53*, 60*.
nl mark : 11, 13, 27*, 29*, 30.
No memory for descriptor: 58.
no ch : 22, 37*, 47*, 54, 56*, 58.
none : 47*, 48*, 49, 50, 51, 52.
normal : 19*, 49, 51, 59*.
ord : 9.
out file : 34*, 35, 42*, 49, 50, 51, 53*.
out md type: 19*, 22.
out mode : 22, 49, 50, 51, 53*, 59*.
out name : 34*, 35, 58.

§62 TIE INDEX 15

p: 42*.
post : 19*, 50, 51, 53*.
pre : 19*, 49, 50, 53*.
print : 15*, 55*, 59*.
print c : 15*, 28.
print ln : 15*, 59*.
print nl : 15*, 43*.
print2 : 15*, 28, 36*, 37*, 43*.
print2 ln : 15*.
print2 nl : 15*, 60*.
print3 : 15*.
print3 ln : 15*, 31*.
prod chf : 22, 48*, 56*, 57.
put line : 42*, 48*, 50, 51.
reading : 18*, 46, 47*, 52.
return code: 6*.
search : 18*, 46, 47*, 58.
Sections do not match: 47*.
spotless : 6*, 60*.
stderr : 15*, 31*, 32*, 60*.
stdin : 15*.
stdout : 15*.
string: 4*, 21, 35, 59*.
system dependencies: 5*, 7, 8, 9, 13, 15*, 16*,

17, 29*, 60*, 61.
tab character expansion: 24*, 27*.
tab mark : 11, 13, 27*.
term new line : 15*, 36*, 37*, 43*, 55*, 60*.
term out : 15*, 17.
test : 18*, 47*.
test file : 45, 47*.
test input : 22, 47*, 48*, 49, 50, 51, 52.
text char: 8, 9.
text file: 8, 21, 35.
the file : 21, 24*, 27*, 30, 36*, 37*.
This can’t happen...: 46.
tieusage : 15*.
troublesome : 6*, 31*, 60*.
true : 4*, 25, 29*, 37*, 38*, 43*, 44*, 46, 47*, 52.
type of file : 21, 25, 28, 29*, 36*, 46, 50, 51, 58.
unknown : 18*, 22, 56*, 57.
update terminal : 17, 28.
usage : 15*, 55*, 56*, 57.
versionstring : 1*, 59*.
WEBINPUTS: 59*.
Where is the match...: 40.
xchr : 9, 10, 12, 13, 14.
xord : 9, 12, 14.

16 NAMES OF THE SECTIONS TIE

⟨Check c for EOF, return if line was empty, otherwise break to process last line 29* ⟩ Used in section 27*.

⟨Check that all changes have been read 54 ⟩ Used in section 59*.

⟨Check the current files for any ends of changes 46 ⟩ Used in section 45.

⟨Error handling functions 31* ⟩ Used in section 2*.

⟨Get a file name 58 ⟩ Used in section 56*.

⟨Get line into buffer 27* ⟩ Used in section 24*.

⟨Get the master file started 36* ⟩ Used in section 59*.

⟨Global #includes 15* ⟩ Used in section 2*.

⟨Global constants 5* ⟩ Used in section 2*.

⟨Global types 7, 8, 18*, 19*, 20, 21 ⟩ Used in section 2*.

⟨Global variables 6*, 9, 22, 23, 26, 35 ⟩ Used in section 2*.

⟨Handle end of file and return 25 ⟩ Used in section 24*.

⟨Handle output 48* ⟩ Used in section 45.

⟨ Increment the line number and print a progess report at certain times 28 ⟩ Used in section 27*.

⟨ Internal functions 24*, 38*, 39*, 42*, 43*, 44*, 55* ⟩ Used in section 2*.

⟨Local variables for initialisation 12 ⟩ Used in section 59*.

⟨Prepare the change files 37* ⟩ Used in section 59*.

⟨Prepare the output file 34* ⟩ Used in section 59*.

⟨Print the job history 60* ⟩ Used in section 59*.

⟨Process a line, break when end of source reached 45 ⟩ Used in section 53*.

⟨Process the input 53* ⟩ Used in section 59*.

⟨ Scan all other files for changes to be done 47* ⟩ Used in section 45.

⟨ Scan the parameters 56* ⟩ Used in section 59*.

⟨ Set a flag 57 ⟩ Used in section 56*.

⟨ Set initial values 10, 13, 14 ⟩ Used in section 59*.

⟨ Skip over comment lines; return if end of file 40 ⟩ Used in section 39*.

⟨ Skip to the next nonblank line; return if end of file 41 ⟩ Used in section 39*.

⟨ Step to next line 52 ⟩ Used in section 45.

⟨Test for normal, break when done 49 ⟩ Used in section 48*.

⟨Test for post, break when done 51 ⟩ Used in section 48*.

⟨Test for pre, break when done 50 ⟩ Used in section 48*.

⟨Test for truncated line, skip to end of line 30 ⟩ Used in section 27*.

⟨The main function 59* ⟩ Used in section 2*.

	Introduction
	The character set
	Input and output
	Data structures
	File I/O
	Reporting errors to the user
	Handling multiple change files
	Input/output organization
	The main program
	System-dependent changes
	Index
	Names of the sections
	Check c for EOF, return if line was empty, otherwise break to process last line
	Check that all changes have been read
	Check the current files for any ends of changes
	Error handling functions
	Get a file name
	Get line into buffer
	Get the master file started
	Global #includes
	Global constants
	Global types
	Global variables
	Handle end of file and return
	Handle output
	Increment the line number and print a progess report at certain times
	Internal functions
	Local variables for initialisation
	Prepare the change files
	Prepare the output file
	Print the job history
	Process a line, break when end of source reached
	Process the input
	Scan all other files for changes to be done
	Scan the parameters
	Set a flag
	Set initial values
	Skip over comment lines; return if end of file
	Skip to the next nonblank line; return if end of file
	Step to next line
	Test for normal, break when done
	Test for post, break when done
	Test for pre, break when done
	Test for truncated line, skip to end of line
	The main function

