
Fixed-Point Glue Setting

Section Page
Introduction . 1 1
The problem and a solution . 4 2
Glue multiplication . 8 4
Glue setting . 12 5
Glue-set printing . 15 6
The driver program . 20 7
Index . 27 9

The preparation of this report was supported in part by the National Science Foundation under grants IST-7921977
and MCS-7723728; by Office of Naval Research grant N00014-81-K-0330; and by the IBM Corporation. ‘TEX’ is a
trademark of the American Mathematical Society.

March 12, 2025 at 15:40

§1 GLUE INTRODUCTION 1

1. Introduction. If TEX is being implemented on a microcomputer that does 32-bit addition and
subtraction, but with multiplication and division restricted to multipliers and divisors that are either powers
of 2 or positive integers less than 215, it can still do the computations associated with the setting of glue in
a suitable way. This program illustrates one solution to the problem.

Another purpose of this program is to provide the first “short” example of the use of WEB.

2. The program itself is written in standard Pascal. It begins with a normal program header, most of
which will be filled in with other parts of this “web” as we are ready to introduce them.

program GLUE (input , output);
type 〈Types in the outer block 6 〉
var 〈Globals in the outer block 8 〉
procedure initialize ; { this procedure gets things started }

var 〈Local variables for initialization 9 〉
begin 〈Set initial values 10 〉;
end;

3. Here are two macros for common programming idioms.

define incr (#) ≡ #← # + 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 {decrease a variable by unity }

2 THE PROBLEM AND A SOLUTION GLUE §4

4. The problem and a solution. We are concerned here with the “setting of glue” that occurs when a
TEX box is being packaged. Let x1, . . . , xn be integers whose sum s = x1 + · · ·+ xn is positive, and let t be
another positive integer. These xi represent scaled amounts of glue in units of sp (scaled points), where one
sp is 2−16 of a printer’s point. The other quantity t represents the total by which the glue should stretch or
shrink. Following the conventions of TEX82, we will assume that the integers we deal with are less than 231

in absolute value.
After the glue has been set, the actual amounts of incremental glue space (in sp) will be the integers

f(x1), . . . , f(xn), where f is a function that we wish to compute. We want f(x) to be nearly proportional
to x, and we also want the sum f(x1) + · · ·+ f(xn) to be nearly equal to t. If we were using floating-point
arithmetic, we would simply compute f(x) ≡ (t/s) ·x and hope for the best; but the goal here is to compute
a suitable f using only the fixed-point arithmetic operations of a typical “16-bit microcomputer.”

The solution adopted here is to determine integers a, b, c such that

f(x) =
⌊
2−bcb2−axc

⌋
if x is nonnegative. Thus, we take x and shift it right by a bits, then multiply by c (which is 215 or less),
and shift the product right by b bits. The quantities a, b, and c are to be chosen so that this calculation
doesn’t cause overflow and so that f(x1) + · · ·+ f(xn) is reasonably close to t.

The following method is used to calculate a and b: Suppose

y = max
1≤i≤n

|xi| .

Let d and e be the smallest integers such that t < 2ds and y < 2e. Since s and t are less than 231, we
have −30 ≤ d ≤ 31 and 1 ≤ e ≤ 31. An error message is given if d + e ≥ 31; in such a case some xm has
|xm| ≥ 2e−1 and we are trying to change |xm| to |(t/s)xm| ≥ 2d+e−2 ≥ 230 sp, which TEX does not permit.
(Consider, for example, the “worst case” situation x1 = 230 + 1, x2 = −230, t = 231 − 1; surely we need not
bother trying to accommodate such anomalous combinations of values.) On the other hand if d + e ≤ 31,
we set a = e− 16 and b = 31− d− e. Notice that this choice of a guarantees that b2−a|xi|c < 216. We will
choose c to be at most 215, so that the product will be less than 231.

The computation of c is the tricky part. The “ideal” value for c would be ρ = 2a+bt/s, since f(x) should
be approximately (t/s) · x. Furthermore it is better to have c slightly larger than ρ, instead of slightly
smaller, since the other operations in f(x) have a downward bias. Therefore we shall compute c = dρe. Since
2a+bt/s < 2a+b+d = 215, we have c ≤ 215 as desired.

We want to compute c = dρe exactly in all cases. There is no difficulty if s < 215, since c can be computed
directly using the formula c =

⌊
(2a+bt+ s− 1)/s

⌋
; overflow will not occur since 2a+bt < 215s < 230.

Otherwise let s = s12l + s2, where 214 ≤ s1 < 215 and 0 ≤ s2 < 2l. We will essentially carry out a
long division. Let t be “normalized” so that 230 ≤ 2ht < 231 for some h. Then we form the quotient and
remainder of 2ht divided by s1,

2ht = qs1 + r0, 0 ≤ r0 < s1.

It follows that 2h+lt − qs = 2lr0 − qs2 = r, say. If 0 ≥ r > −s we have q = d2h+lt/se; otherwise we can
replace (q, r) by (q ± 1, r ∓ s) repeatedly until r is in the correct range. It is not difficult to prove that q
needs to be increased at most once and decreased at most seven times, since 2lr0− qs2 < 2ls1 ≤ s and since
qs2/s ≤ (2ht/s1)(s2/2

ls1) < 231/s21 ≤ 8. Finally, we have a + b − h − l = −1 or −2, since 228+l ≤ 214s =
2a+b+d−1s ≤ 2a+bt < 2a+b+ds = 215s < 230+l and 230 ≤ 2ht < 231. Hence c = d2a+b−h−lqe = d 12qe or d 14qe.

An error analysis shows that these values of a, b, and c work satisfactorily, except in unusual cases where
we wouldn’t expect them to. When x ≥ 0 we have

f(x) = 2−b(2a+bt/s+ θ0)(2−ax− θ1)− θ2
= (t/s)x+ θ02−a−bx− θ12at/s− 2−bθ0θ1 − θ2

where 0 ≤ θ0, θ1, θ2 < 1. Now 0 ≤ θ02−a−bx < 2e−a−b = 2d+e−15 and 0 ≤ θ12at/s < 2a+d = 2d+e−16, and
the other two terms are negligible. Therefore f(x1) + · · ·+ f(xn) differs from t by at most about 2d+e−15n.
Since 2d+e is larger than (t/s)y, which is the largest stretching or shrinking of glue after expansion, the error
is at worst about n/32000 times as much as this, so it is quite reasonable. For example, even if fill glue is
being used to stretch 20 inches, the error will still be less than 1

1600 of an inch.

§5 GLUE THE PROBLEM AND A SOLUTION 3

5. To sum up: Given the positive integers s, t, and y as above, we set

a← blg yc − 15, b← 29− blg yc − blg t/sc, and c← d2a+bt/se.

The implementation below shows how to do the job in Pascal without using large numbers.

6. TEX wants to have the glue-setting information in a 32-bit data type called glue ratio . The Pascal
implementation of TEX82 has glue ratio = real , but alternative definitions of glue ratio are explicitly allowed.

For our purposes we shall let glue ratio be a record that is packed with three fields: The a part will
hold the positive integer a+ 16, the b part will hold the nonnegative integer b, and the c part will hold the
nonnegative integer c. When the formulas above tell us to take b > 30, we might as well set c← 0 instead,
because f(x) will be zero in all cases when b > 30. Note that we have only about 25 bits of information in
all, so it should fit in 32 bits with ease.

〈Types in the outer block 6 〉 ≡
glue ratio = packed record a part : 1 . . 31; { the quantity e = a+ 16 in our derivation }

b part : 0 . . 30; { the quantity b in our derivation }
c part : 0 . . 1́00000 ; { the quantity c in our derivation }
end;

scaled = integer ; { this data type is used for quantities in sp units }
This code is used in section 2.

7. The real problem is to define the procedures that TEX needs to deal with such glue ratio values: (a) Given
scaled numbers s, t, and y as above, to compute the corresponding glue ratio . (b) Given a nonnegative scaled
number x and a glue ratio g, to compute the scaled number f(x). (c) Given a glue ratio g, to print out a
decimal equivalent of g for diagnostic purposes.

The procedures below can be incorporated into TEX82 via a change file without great difficulty. A few
modifications will be needed, because TEX’s glue ratio values can be negative in unusual cases—when the
amount of stretchability or shrinkability is less than zero. Negative values in the c part will handle such
problems, if proper care is taken. The error message below should either become a warning message or a
call to TEX’s print err routine; in the latter case, an appropriate help message should be given, stating that
glue cannot stretch to more than 18 feet long, but that it’s OK to proceed with fingers crossed.

4 GLUE MULTIPLICATION GLUE §8

8. Glue multiplication. The easiest procedure of the three just mentioned is the one that is needed
most often, namely, the computation of f(x).

Pascal doesn’t have built-in binary shift commands or built-in exponentiation, although many computers
do have this capability. Therefore our arithmetic routines use an array called ‘two to the ’, containing powers
of two. Divisions by powers of two are never done in the programs below when the dividend is negative,
so the operations can safely be replaced by right shifts on machines for which this is most appropriate.
(Contrary to popular opinion, the operation ‘xdiv 2’ is not the same as shifting x right one binary place, on
a machine with two’s complement arithmetic, when x is a negative odd integer. But division is equivalent
to shifting when x is nonnegative.)

〈Globals in the outer block 8 〉 ≡
two to the : array [0 . . 30] of integer ; { two to the [k] = 2k }
See also sections 15 and 20.

This code is used in section 2.

9. 〈Local variables for initialization 9 〉 ≡
k: 1 . . 30; { an index for initializing two to the }
This code is used in section 2.

10. 〈 Set initial values 10 〉 ≡
two to the [0]← 1;
for k ← 1 to 30 do two to the [k]← two to the [k − 1] + two to the [k − 1];

This code is used in section 2.

11. We will use the abbreviations ga , gb , and gc as convenient alternatives to Pascal’s with statement.
The glue-multiplication function f , which replaces several occurrences of the ‘float ’ macro in TEX82, is now
easy to state:

define ga ≡ g.a part
define gb ≡ g.b part
define gc ≡ g.c part

function glue mult (x : scaled ; g : glue ratio): integer ; { returns f(x) as above, assuming that x ≥ 0 }
begin if ga > 16 then x← x div two to the [ga − 16] { right shift by a places }
else x← x ∗ two to the [16− ga]; { left shift by −a places }
glue mult ← (x ∗ gc) div two to the [gb]; { right shift by b places }
end; { note that b may be as large as 30 }

§12 GLUE GLUE SETTING 5

12. Glue setting. The glue fix procedure computes a, b, and c by the method explained above. TEX
does not normally compute the quantity y, but it could be made to do so without great difficulty.

This procedure replaces several occurrences of the ‘unfloat ’ macro in TEX82. It would be written as a
function that returns a glue ratio , if Pascal would allow functions to produce records as values.

procedure glue fix (s, t, y : scaled ; var g : glue ratio);
var a, b, c: integer ; { components of the desired ratio }
k, h: integer ; { 30− blg sc, 30− blg tc }
s0 : integer ; { original (unnormalized) value of s }
q, r, s1 : integer ; { quotient, remainder, divisor }
w: integer ; { 2l, where l = 16− k }

begin 〈Normalize s, t, and y, computing a, k, and h 13 〉;
if t < s then b← 15− a− k + h else b← 14− a− k + h;
if (b < 0) ∨ (b > 30) then

begin if b < 0 then write ln (´! Excessive glue.´); { error message }
b← 0; c← 0; {make f(x) identically zero }
end

else begin if k ≥ 16 then { easy case, s0 < 215 }
c← (t div two to the [h− a− b] + s0 − 1) div s0 { here 1 ≤ h− a− b ≤ k − 14 ≤ 16 }

else 〈Compute c by long division 14 〉;
end;

ga ← a+ 16; gb ← b; gc ← c;
end;

13. 〈Normalize s, t, and y, computing a, k, and h 13 〉 ≡
begin a← 15; k ← 0; h← 0; s0 ← s;
while y < 1́0000000000 do { y is known to be positive }

begin decr (a); y ← y + y;
end;

while s < 1́0000000000 do { s is known to be positive }
begin incr (k); s← s+ s;
end;

while t < 1́0000000000 do { t is known to be positive }
begin incr (h); t← t+ t;
end;

end { now 230 ≤ t = 2ht0 < 231 and 230 ≤ s = 2ks0 < 231, hence d = k − h if t/s < 1 }
This code is used in section 12.

14. 〈Compute c by long division 14 〉 ≡
begin w ← two to the [16− k]; s1 ← s0 div w; q ← t div s1 ; r ← ((tmod s1) ∗w)− ((s0 mod w) ∗ q);
if r > 0 then

begin incr (q); r ← r − s0 ;
end

else while r ≤ −s0 do
begin decr (q); r ← r + s0 ;
end;

if a+ b+ k − h = 15 then c← (q + 1) div 2 else c← (q + 3) div 4;
end

This code is used in section 12.

6 GLUE-SET PRINTING GLUE §15

15. Glue-set printing. The last of the three procedures we need is print gr , which displays a glue ratio
in symbolic decimal form. Before constructing such a procedure, we shall consider some simpler routines,
copying them from an early draft of the program TEX82.

define unity ≡ 2́00000 { 216, represents 1.0000 }
〈Globals in the outer block 8 〉 +≡
dig : array [0 . . 15] of 0 . . 9; { for storing digits }

16. An array of digits is printed out by print digs .

procedure print digs (k : integer); {prints dig [k − 1] . . . dig [0] }
begin while k > 0 do

begin decr (k); write (chr (ord (´0´) + dig [k]));
end;

end;

17. A nonnegative integer is printed out by print int .

procedure print int (n : integer); { prints an integer in decimal form }
var k: 0 . . 12; { index to current digit; we assume that 0 ≤ n < 1012 }
begin k ← 0;
repeat dig [k]← nmod 10; n← n div 10; incr (k);
until n = 0;
print digs (k);
end;

18. And here is a procedure to print a nonnegative scaled number.

procedure print scaled (s : scaled); {prints a scaled real, truncated to four digits }
var k: 0 . . 3; { index to current digit of the fraction part }
begin print int (s div unity); { print the integer part }
s← ((smod unity) ∗ 10000) div unity ;
for k ← 0 to 3 do

begin dig [k]← smod 10; s← s div 10;
end;

write (´.´); print digs (4);
end;

19. Now we’re ready to print a glue ratio . Since the effective multiplier is 2−a−bc, we will display the
scaled integer 216−a−bc, taking care to print something special if this quantity is terribly large.

procedure print gr (g : glue ratio); { prints a glue multiplier }
var j: −29 . . 31; { the amount to shift c }
begin j ← 32− ga − gb ;
while j > 15 do

begin write (´2x´); decr (j); { indicate multiples of 2 for BIG cases }
end;

if j < 0 then print scaled (gc div two to the [−j]) { shift right }
else print scaled (gc ∗ two to the [j]); { shift left }
end;

§20 GLUE THE DRIVER PROGRAM 7

20. The driver program. In order to test these routines, we will assume that the input file contains a
sequence of test cases, where each test case consists of the integer numbers t, x1, . . . , xn, 0. The final test
case should be followed by an additional zero.

〈Globals in the outer block 8 〉 +≡
x: array [1 . . 1000] of scaled ; { the xi }
t: scaled ; { the desired total }
m: integer ; { the test case number }

21. Each case will be processed by the following routine, which assumes that t has already been read.

procedure test ; {processes the next data set, given t and m }
var n: 0 . . 1000; { the number of items }
k: 0 . . 1000; { runs through the items }
y: scaled ; {max1≤i≤n |xi| }
g: glue ratio ; { the computed glue multiplier }
s: scaled ; { the sum x1 + · · ·+ xn }
ts : scaled ; { the sum f(x1) + · · ·+ f(xn) }

begin write ln (´Test data set number ´,m : 1, ´:´); 〈Read x1, . . . , xn 22 〉;
〈Compute s and y 23 〉;
if s ≤ 0 then write ln (´Invalid data (nonpositive sum); this set rejected.´)
else begin 〈Compute g and print it 24 〉;
〈Print the values of xi, f(xi), and the totals 25 〉;
end;

end;

22. 〈Read x1, . . . , xn 22 〉 ≡
begin n← 0;
repeat incr (n); read (x[n]);
until x[n] = 0;
decr (n);
end

This code is used in section 21.

23. 〈Compute s and y 23 〉 ≡
begin s← 0; y ← 0;
for k ← 1 to n do

begin s← s+ x[k];
if y < abs (x[k]) then y ← abs (x[k]);
end;

end

This code is used in section 21.

24. 〈Compute g and print it 24 〉 ≡
begin glue fix (s, t, y, g); { set g, perhaps print an error message }
write (´ Glue ratio is ´); print gr (g); write ln (´ (´, ga − 16 : 1, ´,´, gb : 1, ´,´, gc : 1, ´)´);
end

This code is used in section 21.

8 THE DRIVER PROGRAM GLUE §25

25. 〈Print the values of xi, f(xi), and the totals 25 〉 ≡
begin ts ← 0;
for k ← 1 to n do

begin write (x[k] : 20);
if x[k] ≥ 0 then y ← glue mult (x[k], g)
else y ← −glue mult (−x[k], g);
write ln (y : 15); ts ← ts + y;
end;

write ln (´ Totals´, s : 13, ts : 15, ´ (versus ´, t : 1, ´)´);
end

This code is used in section 21.

26. Here is the main program.

begin initialize ; m← 1; read (t);
while t > 0 do

begin test ; incr (m); read (t);
end;

end.

§27 GLUE INDEX 9

27. Index. Here are the section numbers where various identifiers are used in the program, and where
various topics are discussed.

a: 12.
a part : 6, 11.
abs : 23.
b: 12.
b part : 6, 11.
c: 12.
c part : 6, 7, 11.
chr : 16.
decr : 3, 13, 14, 16, 19, 22.
dig : 15, 16, 17, 18.
error analysis: 4.
error message: 7, 12.
float : 11.
g: 11, 12, 19, 21.
ga : 11, 12, 19, 24.
gb : 11, 12, 19, 24.
gc : 11, 12, 19, 24.
GLUE : 2.
glue fix : 12, 24.
glue mult : 11, 25.
glue ratio : 6, 7, 11, 12, 15, 19, 21.
h: 12.
hairy mathematics: 4.
incr : 3, 13, 14, 17, 22, 26.
initialize : 2, 26.
input : 2, 20.
integer : 6, 8, 11, 12, 16, 17, 20.
j: 19.
k: 9, 12, 16, 17, 18.
m: 20.
main program: 26.
n: 17, 21.
ord : 16.
output : 2.
print digs : 16, 17, 18.
print err : 7.
print gr : 15, 19, 24.
print int : 17, 18.
print scaled : 18, 19.
program header: 2.
q: 12.
r: 12.
read : 22, 26.
real : 6.
s: 12, 21.
scaled : 6, 11, 12, 18, 20, 21.
s0 : 12, 13, 14.
s1 : 12, 14.
t: 12, 20.
test : 21, 26.

ts : 21, 25.
two to the : 8, 9, 10, 11, 12, 14, 19.
unfloat : 12.
unity : 15, 18.
w: 12.
write : 16, 18, 19, 24, 25.
write ln : 12, 21, 24, 25.
x: 11, 20.
y: 12.

10 NAMES OF THE SECTIONS GLUE

〈Compute c by long division 14 〉 Used in section 12.

〈Compute g and print it 24 〉 Used in section 21.

〈Compute s and y 23 〉 Used in section 21.

〈Globals in the outer block 8, 15, 20 〉 Used in section 2.

〈Local variables for initialization 9 〉 Used in section 2.

〈Normalize s, t, and y, computing a, k, and h 13 〉 Used in section 12.

〈Print the values of xi, f(xi), and the totals 25 〉 Used in section 21.

〈Read x1, . . . , xn 22 〉 Used in section 21.

〈 Set initial values 10 〉 Used in section 2.

〈Types in the outer block 6 〉 Used in section 2.

	 Introduction
	 The problem and a solution
	 Glue multiplication
	 Glue setting
	 Glue-set printing
	 The driver program
	 Index
	Names of the sections
	Compute c by long division
	Compute g and print it
	Compute s and y
	Globals in the outer block
	Local variables for initialization
	Normalize s, t, and y, computing a, k, and h
	Print the values of x_i, f(x_i), and the totals
	Read x_1,,x_n
	Set initial values
	Types in the outer block

